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Abstract

Star-shaped bodies are an important nonconvex generaliza-

tion of convex bodies (e.g., linear programming with viola-

tions). Here we present an efficient algorithm for sampling

a given star-shaped body. The complexity of the algorithm

grows polynomially in the dimension and inverse polynomi-

ally in the fraction of the volume taken up by the kernel

of the star-shaped body. The analysis is based on a new

isoperimetric inequality. Our main technical contribution is

a tool for proving such inequalities when the domain is not

convex. As a consequence, we obtain a polynomial algorithm

for computing the volume of such a set as well. In contrast,

linear optimization over star-shaped sets is NP-hard.

1 Introduction

Convexity has been a cornerstone of fundamental
polynomial-time algorithms for continuous as well as
discrete problems [GLS88]. The basic problems of opti-
mization, integration and sampling in Rn can be solved
efficiently (to arbitrary approximation) for convex bod-
ies given only by oracles. More precisely,

• Optimization. Given a convex function f : Rn →
R, a convex body K specified by a membership
oracle and a point in K, and ε > 0, find a point
x∗ ∈ K s.t. f(x∗) ≤ minK f(x). This can be
done using either the Ellipsoid algorithm [YN76,
GLS88], Vaidya’s algorithm [Vai96] or the random
walk approach [BV04, LV06a]. For important
special cases such as linear programming, there are
several alternative approaches.

• Integration. Given an integrable logconcave func-
tion f : Rn → R+ as an oracle, and ε > 0, find A
s.t. (1−ε)

∫
f < A < (1+ε)

∫
f . This is done using

a Monte Carlo algorithm based on sampling logcon-
cave densities [DFK91, AK91, LV06b, LV06a].

• Sampling. Any logconcave density can be sampled
efficiently [LV06a]. The sampling algorithm is
based on a suitable random walk.
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For the above problems and related applications, both
the algorithms and their analyses rely heavily on the
assumption of convexity or its natural extension, log-
concavity. For example, for optimization, all the known
algorithms use the fact that a local optimum is a global
optimum. Similarly, a key step in the analysis of sam-
pling algorithms is the derivation of isoperimetric in-
equalities, which are currently known for logconcave
functions. Even the proofs of these inequalities (more
on this presently) are based on techniques that funda-
mentally assume convexity. The main motivation of
this paper is the following: for what nonconvex bod-
ies/distributions, can the above basic problems be solved
efficiently?

In this paper, we consider a well-studied generaliza-
tion of convex bodies called star-shaped bodies. Star-
shaped sets come up naturally in many fields, includ-
ing computational geometry [PS85], integral geometry,
mixed integer programming, etc. [Cox73]. A star-
shaped set has at least one point such that every line
through the point has a convex intersection with the
set. Alternatively, star-shaped sets can be viewed as the
union of convex sets, with all the convex sets having a
nonempty intersection. The subset of points that can
“see” the full set is called the kernel of the star-shaped
set.

A compelling example of a star-shaped set is the
“k-out-of-m-inequalities” set, i.e., the set of points
that satisfy at least k out of a given set of m linear
inequalities, with the assumption that there is a feasible
solution to all m. In this case the kernel is the
intersection of all m inequalities. Another interesting
special case is that of “k-out-of-m-polytopes”, where
we have m polytopes with a nonempty intersection
and feasible points are required to lie in at least k
of the m polytopes. These and other special cases
have been studied and applied extensively in operations
research [RP94, Mat94, Cha05]. Not surprisingly, linear
optimization over even these special cases is NP -hard
[LSN07].

This might suggest that the problems of sampling
and integration are also intractable over star-shaped
bodies. Indeed convex optimization is reducible to sam-
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pling. Our main result (Theorem 1.3) is that, to the con-
trary, star-shaped bodies can be sampled efficiently, with
the complexity growing as a polynomial in n, 1/ε, lnD
and 1/η, where n is the dimension, ε is an error param-
eter denoting distance to the true uniform distribution,
D is the diameter of the body and η is the fraction of the
volume taken up by the kernel; we assume that we are
given membership oracles for S as well as for its kernel
K and a point x0 so that the unit ball around x0 is con-
tained in S. (For the particular cases considered above,
these oracles are readily available). The sampling al-
gorithm leads to an efficient algorithm for computing
the volume of such a set as well. We note here that lin-
ear optimization remains NP-hard even when the kernel
takes up most of the volume.

A reader familiar with sampling algorithms for con-
vex bodies will recall that such an analysis crucially uses
isoperimetric inequalities. Here we prove isoperimet-
ric inequalities for star-shaped sets (Theorems 1.1, 1.2).
The key technical contribution of this paper is the proof
of these inequalities and a new tool we develop for this
purpose, which is also of independent interest. We refer
to this tool as a thin decomposition of a set. The other
crucial ingredients for efficient sampling (local conduc-
tance, coupling, etc...) extend naturally from the convex
case to the star-shaped one. Therefore building on this
new isoperimetry, we are able to show that the ball walk
provides an efficient sampler for star-shaped bodies.

In the rest of this section, we give some context for
thin partitions.

The common ingredient of most proofs of isoperi-
metric inequalities for convex bodies is the localization
lemma, introduced by Lovász and Simonovits [LS93].
The approach is based on proof by contradiction. If a
certain target inequality is false in Rn, then there ex-
ists an essentially one-dimensional object over which it
is still false. The proof is then completed by proving
a one-dimensional inequality. This approach has been
quite successful for convex bodies and logconcave func-
tions and for proving many other inequalities in convex
geometry. These, in turn, have played an essential role
in the analysis of algorithms for convex bodies.

However, this approach does not seem to work
for nonconvex sets, since the resulting one-dimensional
versions could be nonconvex or nonlogconcave (e.g.,
for star-shaped bodies, convexity holds along lines that
intersect the kernel but is not required along lines that
do not intersect the kernel). To overcome this, we use
partitions of Rn induced by hyperplanes where each part
is “long” in at most one direction. The overall proof
strategy in applying the partition is proof by induction:
we combine inequalities on all the parts to derive an
inequality for the full set. The advantage of this (as

opposed to proof by contradiction) is that a suitably
strong inequality does not need to hold for every part;
it suffices to hold for most parts.

1.1 Preliminaries Let S ⊆ Rn be a compact body.
Define the kernel of S as KS := {x : x ∈ S : ∀y ∈
S [x, y] ⊆ S}. We say S is star-shaped if KS is nonempty
and let η(S) = vol(KS)/vol(S).

We denote the n-dimensional ball of radius r cen-
tered around a point x as Bn(x, r). The ball walk with
step size δ in a set S is the following Markov process:
At a point x in S, we pick a uniform random point in
Bn(x, δ) and move to the chosen point if it is in S and
otherwise stay put. Let πS denote the uniform measure
on S and let σm denote the measure after m ball walk
steps. For two probability distributions σ, τ , the total
variation distance is

dtv(σ, τ) = supA(σ(A)− τ(A))

1.2 Results We begin with two isoperimetric in-
equalities for star-shaped bodies, one parametrized us-
ing the diameter and the other using the second mo-
ment.

Theorem 1.1. Let S ⊆ Rn be a star-shaped body with
diameter D and η(S) > 0. Then for any measurable
partition (S1, S3, S2) of S, we have that

vol(S3) ≥ η(S)
4D

d(S1, S2) min {vol(S1), vol(S2)}

where d(S1, S2) is the minimum distance between a point
in S1 and a point in S2.

The above theorem is nearly the best possible as
shown by a construction in Theorem 3.1.

Theorem 1.2. Let S ⊆ Rn be a star-shaped body with
η(S) > 0 and MS = ES [‖X − µS‖2] where µS is
the centroid of S. Then for any measurable partition
(S1, S3, S2) of S, we have that either

vol(S3) ≥ η(S)
4

vol(S)

or

vol(S3) ≥ η(S)
3
2

16
√
MS

d(S1, S2) min {vol(S1), vol(S2)}

where d(S1, S2) is the minimum distance between a point
in S1 and a point in S2.

Next, we turn to the complexity of sampling. We
assume that we have an oracle for the star-shaped body
S, a lower bound on η and an M -warm start σO for the
random walk, i.e. an initial distribution on S such that
∀A ⊆ S, σ0(A) ≤MπS(A).
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Theorem 1.3. Let S ⊆ Rn be a star-shaped body of
diameter D with kernel KS satisfying Bn(0, 1) ⊆ KS.
Let πS be uniform distribution over S and ε > 0. Given
a random point x0 from a distribution σ0 such that σ0 is
an M -warm start for πS, then there exists an absolute
constant C such that, after

m >
Cn2D2M2

η(S)2ε2
log

2M
ε

steps of the ball walk with radius ε
8M
√
n

, we have
dTV (σm, πS) < ε.

Theorem 1.4. Let S ⊆ Rn be a star-shaped body of
diameter D with kernel KS. Suppose we are given
membership oracles for KS and S and a point x0 such
that Bn(x0, 1) ⊆ KS. Then, for any ε > 0, a nearly
random point X from S can be produced using amortized
O∗(n3/(η(S)4ε2)) oracle calls with the guarantee that
the distribution σ of X satisfies dTV (σ, πS) < ε.

We note that up to the polynomial in η, this matches
the best-known bounds for sampling convex bodies.

2 Thin Decompositions via Bisection

Definition 2.1. Let S ⊆ Rn. We define S to be a
compact body if S is compact, has non-empty interior,
and satisfies cl(S◦) = S, where cl(S◦) denotes the
closure of the interior of S.

Let S ⊆ Rn be a compact body. A decomposition
of S is a finite collection P = {P1, . . . , Pk} of compact
bodies such that

1. S = ∪ki=1Pi

2. Pi ∩ Pj = ∂Pi ∩ ∂Pj, 1 ≤ i < j ≤ k

Furthermore, we define a decomposition P to be ε-thin
if each P ∈ P is contained in a cylinder of radius at
most ε.

For completeness, we state without proof the fol-
lowing simple lemma.

Lemma 2.1. Let S ⊆ Rn be a compact body.

1. Let N be a decomposition of S, and let S′ ⊆ S be a
compact body. Then
N ′ = {cl((P ∩ S)◦) : P ∈ N,P ∩ S◦ 6= ∅} is a de-
composition of S′.

2. Let N be a decomposition of S, and let N ′ be
a decomposition of an element P ∈ N . Then
N ∪N ′ \ P is a decomposition of S.

The following simple lemma from [LS93] will be
used repeatedly.

Lemma 2.2. Let f : Rn → R be integrable, n ≥ 2.
Then for any point z ∈ Rn, and any 2-dimensional
linear subspace S of Rn, there exists a hyperplane
H =

{
x : aTx = aT z

}
, with a ∈ S, inducing halfspaces

H+, H−, such that it equipartitions f , i.e.,∫
H+

f(x) dx =
∫
H−

f(x) dx.

Theorem 2.1. For any integrable function f : Rn → R
with supp(f) ⊆ S, S a compact body, and

∫
fdx = 0,

and any ε > 0, there exists an ε-thin decomposition P
of S such that each part P ∈ P is obtained by successive
half space cuts from S and satisfies

∫
P
fdx = 0.

Proof. Pick D such that S ⊆ Bn(0, D). Since S
is compact we know that D < ∞. We start with
the initial decomposition P0 = {S} of S. From this
decomposition, we will inductively build decompositions
P1, . . . ,Pn−1 with the following properties. For each i,
0 ≤ i ≤ n− 1, we have that for all P ∈ Pi:

1. P is obtained from S via successive half space cuts.

2.
∫
P
fdx = 0

3. ∃S ⊆ Rn, an i-dimensional linear subspace of Rn
such that the orthogonal projection of P into S is
contained inside of cuboid of side length at most
δ = 2ε√

n
.

Assuming the above properties, one can easily see that
each part in Pn−1 is contained inside a cylinder of radius√
n δ2 = ε, and hence Pn−1 is an ε-thin decomposition of

S compatible with f as needed. Hence, we only need to
show how to perform the induction step.

Take P ∈ Pi, 0 ≤ i ≤ n − 2. By assumption,
there exists an i-dimensional linear subspace T such
that πT (P ), the orthogonal projection of P into T , is
contained inside a cuboid of size length at most δ. Since
i ≤ n − 2, we may pick a 2 dimensional subspace T̂
orthogonal to T .

Let Q = conv.hull(P ) and let ΠT̂ denote the or-
thogonal projection map from Rn onto T̂ . Since P ⊆
S ⊆ Bn(0, D) and Bn(0, D) is convex, we know that
Q ⊆ Bn(0, D). Therefore ΠT̂ (Q) ⊆ Bn(0, D) ∩ S ⇒
vol2(QT̂ ) ≤ πD2. Let N = {Q}. We perform the follow-
ing iterative cutting procedure on N . Take an element
E ∈ N . If vol2(ΠT̂ (E)) < δ2/2 stop. Otherwise, letting
µ denote the centroid of ΠT̂ (E), we have by Lemma 2.2
that there exists H = {x : atx = atµ}, where a ∈ S,
such that

∫
E∩H− fdx =

∫
E∩H+ fdx = 0. Let E1 =

E∩H−, E2 = E∩H+. Now set N ← N ∪{E1, E2}\E.
Since we are cutting through the centroid of ΠS(E),
and ΠT̂ (E) is convex, by Grunbaum’s theorem we know
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that vol2(ΠT̂ (E1)), vol2(ΠT̂ (E2)) ≤ (1− 1
e )vol2(ΠT̂ (E)).

Therefore, after a number of iterations depending only
on D, we will have that every element E ∈ N has
vol2(ΠT̂ (E)) < δ2

2 .

Lemma 2.3. Let E ∈ N . There exists v ∈ T̂ , ‖v‖ = 1,
such that widthv(E) = supx∈E vTx− infx∈E vTx ≤ δ.

Proof. Assume not, then note that the diameter of
ΠT̂ (E) is at least δ. Let [u, v] be a diameter inducing
chord in ΠT̂ (E). Let w, z be points on opposite sides of
[u, v] such that their distances from the line l(u, v) are
maximum. Then the sum of the distances from w, z
to l(u, v) is at least δ and therefore the area of the
quadrilateral induced by these four points is at least
δ2/2, a contradiction. Hence there exists a direction v
such that widthv(E) ≤ δ.

Note then that the orthogonal projection of E into the
subspace spanned by v and T is contained inside a
cuboid of size length at most δ as needed.

Hence N is now a decomposition of Q =
conv.hull(P ), such that each element of E ∈ N
has i + 1 orthogonal δ-thin directions. To trans-
form N into a decomposition of P , we let N ′ =
{cl((E ∩ P )◦) : E ∈ N,E ∩ P ◦ 6= ∅}. By adding N ′ to
Pi+1, we complete the induction step as needed to prove
the theorem.

3 Application to Nonconvex Isoperimetry

The benefit of Theorem 2.1 is that it will allow us
to derive isoperimetric inequalities for high-dimensional
sets without requiring convexity along every line. We
show an application to star-shaped bodies. To gain
some intuition, it is useful to understand what the
obstructions to isoperimetry in the star-shaped setting
are, as well as to understand why star-shaped bodies
have good isoperimetry at all. The following Theorem
illustrates what a “canonical” bottleneck looks like in
the star-shaped setting.

S K x 1

Figure 1: Star-Shaped Gluing of 2 Truncated Cones

Theorem 3.1. Let Hn = {x : x ∈ Rn, x1 = 0}. There
exists an absolute constant C > 0, such that for all

η > 0, there exists a sequence of symmetric star-shaped
bodies Sn ∈ Rn centered at 0 such that for all n ≥ Nη,
we have that η(Sn) = Ω(η) and

voln−1(Hn ∩ Sn) ≤ C

(
η ln( 1

η )

(1− η)Diam(Sn)

)
voln(Sn)

Proof. [Proof of Theorem 3.1 (Isoperimetry: Upper
Bound)] Our strategy here will be to reduce the above
statement to one about one dimensional distributions on
the real line. For each η, we will construct a candidate
sequence Sn of star-shaped bodies which are rotation-
ally symmetric about the x1 axis. Then by analyzing
the cross-sectional distributions of Sn and KSn along
the x1-axis, we will explicitly construct one dimensional
asymptotic densities fη, fKη to which the cross-sectional
distributions of Sn and KSn respectively converge. We
will then establish the required isoperimetry and ker-
nel volume constraints for the sequence Sn and KSn by
direct computation on fη, f

K
η .

The geometry of our constructions is simple. As
shown in Figure 1 previously, we will take two n-
dimensional rotational cones with variance 1 along
the x1 axis, truncate them at their ends removing
exactly an η fraction of their volume, and glue them
together at the truncation sites. Choose ln such that(

1− ln√
n(n+ 2)

)n
= η. Since ln → ln

(
1
η

)
we may

choose Nη such that for n ≥ Nη, 2ln ≤
√
n(n+ 2).

Now let

Sn =

x :

√√√√ n∑
i=2

x2
i ≤ 1− ln + x√

n(n+ 2)
, x1 ∈ [−ln, 0]


⋃ x :

√√√√ n∑
i=2

x2
i ≤ 1− ln − x√

n(n+ 2)
, x1 ∈ [0, ln]


From here one can easily verify that the kernel of Sn is

KSn =

x :

√√√√ n∑
i=2

x2
i ≤ 1− ln − x√

n(n+ 2)
, x1 ∈ [−ln, 0]


⋃ x :

√√√√ n∑
i=2

x2
i ≤ 1− ln + x√

n(n+ 2)
, x1 ∈ [0, ln]


Next, a simple computation reveals that the cross-
sectional distribution of Sn is

fn(x) =


√
n(n+2)

2(1−η)n (1− ln+x√
n(n+2)

)n−1 : x ∈ [−ln, 0]
√
n(n+2)

2(1−η)n (1− ln−x√
n(n+2)

)n−1 : x ∈ [0, ln]

0 : otherwise
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Another computation, shows us that the cross-sectional
density of KSn relative to Sn (we normalize by the
volume of Sn) is

fKn (x) =


√
n(n+2)

2(1−η)n (1− ln−x√
n(n+2)

)n−1 : x ∈ [−ln, 0]
√
n(n+2)

2(1−η)n (1− ln+x√
n(n+2)

)n−1 : x ∈ [0, ln]

0 : otherwise

From here, one can easily verify that the sequence fn
converges pointwise to the density function fη : R→ R+

where

fη(x) =


η

2(1−η)e
−x : x ∈ [− ln( 1

η ), 0]
η

2(1−η)e
x : x ∈ [0, ln( 1

η )]

0 : otherwise

Similarly the sequence fKn converges pointwise to fKη
where

fKη (x) =


η

2(1−η)e
x : x ∈ [− ln( 1

η ), 0]
η

2(1−η)e
−x : x ∈ [0, ln( 1

η )]

0 : otherwise

Notice that fKη ≤ fη and that fKη is log-concave.
We get that∫

R
fKη (x)dx = 2

η

2(1− η)

∫ ln( 1
η )

0

e−xdx

= 2
η

2(1− η)
(1− η) = η.

The above computation shows that the volume fraction
of the asymptotic kernel is indeed η as required. Clearly
the length of the support of fη is 2 ln( 1

η ). Therefore we
see that

fη(0) =
η

2(1− η)
=

η ln( 1
η )

(1− η)|supp(fη)|

where |supp(fη)| denotes the length of the support of

fη. Since vol(Sn∩Hn)

vol(Sn)
= fn(0) → fη(0) as n → ∞,

the above computation verifies the claim of the theorem
passing through the asymptotics. The one thing left to
justify is that Diam(Sn) → |supp(fη)|. As it is, this is
not the case, but this can easily be achieved by scaling
Sn orthogonally to the x1 axis by a factor of 1

n2 . By
doing this, we are collapsing the sequence Sn onto the x1

axis, without changing the cross sectional distribution
along the axis, and hence asymptotically Diam(Sn) will
converge to |supp(f)η| as needed.

The above theorem gives us an upper bound on the
isoperimetric coefficient of general star shaped sets. We

note that the implicit isoperimetric cut above is (H−n ∩
Sn, H

+
n ∩Sn), H+

n and H−n being the halfspaces induced
by Hn, and where voln(H+

n ∩ Sn) = voln(H+
n ∩ Sn) =

1
2voln(Sn) by symmetry of Sn. In the convex setting the
isoperimetric coefficient is always Ω(1/Diam(S)), and
hence the above theorem shows us the rate at which
isoperimetry must degrade from the convex setting
as η(S) decreases. In particular, from Figure 1, we
observe how contrary to the convex setting we can get a
V-shaped break in logconcavity of the cross-sectional
volume distribution of a star-shaped body. On the
other hand, as we will see later via Lemma 5.1, the
severity of these breaks is strictly controlled by the
kernel of S. For reference, in Lemma 5.1 we show that
the cross-sectional distributions of a star-shaped body
satisfy a form of restricted logconcavity with respect to
the kernel. The rest of this section will be devoted to
proving isoperimetric inequalities for star-shaped sets.
In particular, in Theorem 1.1 we show isoperimetry for
star-shaped bodies in terms of the diameter and η which
in light of Theorem 3.1 is optimal within a factor of

O
(

ln( 1
η )

1−η

)
.

Lemma 3.3 forms the technical core of the
isoperimetry proofs for star-shaped sets. Informally, we
prove that for any thin enough hyperplane cut decompo-
sition of a star-shaped set S, the parts of the decompo-
sition that intersect the kernel of S are “almost” convex.
This will in essence allow us to apply the isoperimetric
inequalities developed for convex sets to the “almost”
convex pieces from which we will extract the isoperi-
metric properties of S.

First we state and prove a few technical lemmas
which will be useful.

Lemma 3.1. Let K1,K2 ⊆ Rn be compact bodies and
let π1, π2 denote the uniform measures on K1,K2 re-
spectively. Then

vol(K14K2) ≤ εmin {vol(K1), vol(K2)} ⇒ dtv(π1, π2) ≤ ε

Proof. Let f1, f2 : Rn → R+ denote the associated
densities with respect to π1, π2. We recollect that

dtv(π1, π2) =
1
2

∫
Rn
|f1(x)− f2(x)|dx.

Expanding the above formula, the result follows by a
direct computation.

Lemma 3.2. For S ⊆ Rn, KS is a convex set. Further-
more, if S is compact then KS is compact.

Proof. If KS = ∅ we are done. Therefore assume
KS 6= ∅, and pick x, y ∈ KS . Now take z ∈ [x, y].
We need to show that ∀p ∈ S, [z, p] ⊆ S. Assume not,
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then there exists p ∈ S, q /∈ S, such that q ∈ [z, p]. Since
x, y ∈ S we have that [x, p], [y, p] ⊆ S. Furthermore we
see that q is in the interior of the triangle defined by
x, y, p. Let l(x, q) denote the line through x, q. Since
q is in the interior of conv.hull {x, y, p} we must have
that l(x, q) intersects the segment [y, p] in some point
r. But now note that r ∈ S, since r ∈ [y, p], and by
construction [x, r] 6⊆ S, a contradiction. This proves
the statement.

For the furthermore, we assume that S is compact.
To show that KS is compact, we need only show that
KS is closed. If x is a limit point of KS , we have a
sequence {xi}∞i=1 ⊆ KS converging to x. Now take any
point p ∈ S. We see that [xi, p] ⊆ S for all i ≥ 1, and we
note that the sequence of line segments [xi, p] converge
to [x, p] as i → ∞. By compactness of S, we have that
the limit segment [x, p] is indeed contained in S. Since
this holds for all p, we see that x ∈ KS as needed.

Lemma 3.3. Let S be a star-shaped body with η(S) > 0,
and let (S1, S3, S2) denote a measurable partition of S
where vol(S1), vol(S2) > 0. Then for every ε > 0, there
exists a decomposition P of S such that

1. ∀P ∈ P, vol(S1∩P )vol(S2)−vol(S1)vol(S2∩P ) = 0.

2. ∃N ⊆ P such that

(a)
∑
P∈N

vol(P )

vol(S)
≥ (1− ε)η(S)

(b) ∀P ∈ N , P is ε-convex, i.e., there exists P ′ ⊆
Rn a convex body, such that vol(P 4 P ′) ≤
εmin {vol(P ), vol(P ′)}.

Proof. [Proof of Lemma 3.3 (Near Convex Decomposi-
tion)] First we will show that we can find subset Kr

S ⊆
KS that takes up most and the kernel and that lies deep
inside it, i.e. that Kr

S + Bn(0, r) ⊆ KS . Formally, let
Kr
S = {x : Bn(x, r) ⊆ KS} where r > 0. Let K◦S denote

the interior of KS . We note that K◦S = ∪∞i=1K
1
i

S . By
the continuity of measure, there exists a positive inte-
ger j, such that for ε0 = 1

j , vol(Kε0
S ) ≥ (1 − ε)vol(K◦S).

Since KS is convex, we know that vol(K◦S) = vol(KS)
and hence

vol(Kε0
S )

vol(S)
≥ (1− ε)vol(KS)

vol(S)
= (1− ε)η(S)

Let f : Rn → R be

f(x) = vol(S2)1S1(x)− vol(S1)1S2(x)

where 1S1 , 1S2 are the indicator functions for S1 and
S2 respectively. We note that

∫
S
f = vol(S2)vol(S1) −

vol(S1)vol(S2) = 0. By Theorem 2.1, for every ε1 > 0,
there exists an ε1-thin decomposition Pε1 of S such that

P

C C’

P ’
0

 

L

Figure 2: P is ε-convex

each part P ∈ P is obtained by successive half space cuts
from S and

∫
P
fdx = 0. We note that the condition∫

P
fdx = 0 immediately implies condition (1) for Pε1 .

For the time being we will assume that ε1 < 1
2ε0 and

determine its exact value later.
Let N = {P : P ∈ Pε1 , P ∩K

ε0
S 6= ∅}. Since Pε1 is

a decomposition of S, we note that ∪P∈NP ⊇ Kε0
S and

hence∑
P∈N vol(P )
vol(S)

=
vol(∪P∈NP )

vol(S)
≥

vol(Kε0
S )

vol(S)
≥ (1−ε)η(S)

We will now show that for an appropriately chosen
ε1 every P ∈ N is ε-convex. Our strategy is as follows.
We analyze a minimal cylinder C of radius ε1 containing
P , which exists by our assumption on Pε1 . We will use
the fact that P contains a point deep inside the kernel
to show that a subcylinder C ′ of C is fully contained
inside S. Lastly we will show that P ′ = C ′ ∩ P is a
convex body whose volume is at least a (1− ε) fraction
of the volume of P .

Take P ∈ N . Let C be the cylinder of radius at
most ε1 and let L ⊆ C denote the axis of C. Without
loss of generality, we may assume that L is a subset of
the x1 axis, i.e.

C =

{
x : x ∈ Rn, a ≤ x1 ≤ b,

n∑
i=2

x2
i ≤ ε21

}
.

By assumption, we have that P ∩Kε0
S 6= ∅, so pick

c ∈ P ∩ Kε0
S . Since ε1 < 1

2ε0, there exists d ∈ L
such that ‖c − d‖ ≤ ε1 < 1

2ε0. Hence Bn(c, ε0) ⊆
KS ⇒ Bn(d, ε02 ) ⊆ KS . Let δ = 1

2ε0. Without loss
of generality, we may assume that d = 0. Furthermore,
by choosing a, b minimal subject to containing P , we
may assume there exist points v, w ∈ P such that
v1 = a and w1 = b. By possibly rotating C, we may
assume that v = (a, r, 0, . . . , 0) where 0 ≤ r ≤ ε1. By
assumption on d, we know that t = (0,−δ, 0, . . . , 0) ∈
KS . Therefore the line segment [v, t] ⊆ S. By a simple
computation, we see that [v, t] intersects the x1 axis
at v′ = ( δ

r+δa, 0, . . . , 0). Since 0 ∈ KS , we also have
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that [v′, 0] ∈ S ⇒ v∗ = ( δ
ε1+δa, 0, . . . , 0) ∈ S. By

symmetric reasoning with respect to w, we have that
w∗ = ( δ

ε1+δ b, 0, . . . , 0) ∈ S.
Now, consider the subcylinder

C ′ =

{
x :

δ − ε1
δ + ε1

a ≤ x1 ≤
δ − ε1
δ + ε1

b,
n∑
i=2

x2
i ≤ ε21

}
.

Lemma 3.4. C ′ ⊆ S.

Proof. Take x ∈ C ′. By symmetry we may assume that
x = (e, f, 0, . . . , 0) where 0 ≤ e ≤ δ−ε1

δ+ε2
b and 0 ≤ f ≤ ε1.

Now examine the line l(x,w∗). A simple computation
reveals that l(x,w∗) intersects the x2 axis at the point
x∗ = (0, δb

δb−(δ+ε1)ef, 0, . . .). Now we note that

δb

δb− (δ + ε1)e
f ≤ δb

δb− (δ + ε1)e
ε1

≤ δb

δb− (δ + ε1) δ−ε1δ+ε1
b
ε1

=
δb

ε1b
ε1 = δ.

Therefore by assumption on d we know that x∗ ∈ KS .
Since x ∈ [x∗, w∗], we have that x ∈ S as needed.

Now define P ′ := P ∩ C ′.

Lemma 3.5. P ′ is convex.

Proof. To see this note that P is obtained from S via
halfspace cuts, i.e. P = S

⋂m
i=1Hi where each Hi

denotes a halfspace. Now we see that

P ′ = P ∩ C ′ = S ∩ C ′
m⋂
i=1

Hi = C ′
m⋂
i=1

Hi

since C ′ ⊆ S. Since the intersection of convex sets is
convex, we have that P ′ is convex as needed.

Now note that P 4 P ′ = P \ P ′ = P \C ′. We will now
show that for an appropriate choice of ε1, depending
only on δ and ε, we have that P 4 P ′ ≤ εvol(P ′) which
will prove that P is indeed ε-convex. In fact, letting
P+ = P ∩ {x : x1 ≥ 0} , P ′+ = P ∩ {x : x1 ≥ 0}, we will
prove that

vol(P+ 4 P ′+) ≤ εvol(P ′+)

By symmetry, the same inequality will follow for the
x1 ≤ 0 side, and by summing up the two inequalities
the result follows.

Let S(t) = {x : x ∈ P+, x1 = t}, and s(t) =
voln−1(S(t)). Now let b′ = δ−ε1

δ+ε1
b and let t∗ =

argmaxb′≤t≤bs(t). We have that

voln(P+ \ C ′) =
∫ b

b′
s(t)dt ≤

∫ b

b′
s(t∗)dt

= (b− b′)s(t∗) =
(

2ε1
δ + ε1

)
bs(t∗).

Now by construction the section S(0) ⊆ KS . We claim
that S(0) ⊆ KP+ . Take x ∈ S(0) and y ∈ P+. Since
x ∈ KS , we have that [x, y] ⊆ S. Now P+ = S

⋂m
i=1Hi.

Clearly x, y ∈ P ⇒ x, y ∈ Hi, for 1 ≤ i ≤ m.
Furthermore, since each Hi is convex, we have that
[x, y] ⊆ Hi. Therefore [x, y] ⊆ P+ as needed. Choose
α ∈ [0, 1] such that (1 − α)0 + αt∗ = b′. Since
S(0) ⊆ KP+ , we see that

(1− α)S(0) + αS(t∗) ⊆ S(b′)

Therefore by the Brunn-Minkowski inequality, we have
that

s(b′) ≥ ((1− α)voln−1(S(0))
1

n−1

+ αvoln−1(S(t∗))
1

n−1 )n−1

≥ αn−1voln−1(S(t∗)) ≥
(
δ − ε1
δ + ε1

)n−1

s(t∗)

Since P ′+ is convex we note that
conv.hull {0, S(b′)} ⊆ P ′+ and hence

voln(P ′+) ≥ voln (conv.hull {0, S(b′)})

=
1
n
b′s(b′) ≥ 1

n

(
δ − ε1
δ + ε1

)n
bs(t∗).

Now by choosing ε1 small enough such that(
2ε1
δ + ε1

)
≤ ε 1

n

(
δ − ε1
δ + ε1

)n
,

we get that vol(P+ 4 P ′+) ≤ εvoln(P ′+) as needed.

Using the above lemma, we now prove Theorem 1.1.

Proof. [Proof of Theorem 1.1 (Diameter isoperimetry)]
Let (S1, S3, S2) be a measurable partition of S. Without
loss of generality we may assume that vol(S1) ≤ vol(S2).

Let α = vol(S1)

vol(S2)
, where we see that α ≤ 1. Our goal

is now to show that vol(S3) is “large” with respect to
vol(S1). Note that

vol(S) ≥ vol(S1) + vol(S2) =
α+ 1
α

vol(S1)

implies that
α

α+ 1
vol(S) ≥ vol(S1)
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Let Pε be the decomposition of S with respect to
(S1, S3, S2) as defined in Lemma 3.3 with parameter ε.
Let N denote the set of ε-convex needles. Let N+ ={
P : P ∈ N, vol(S1 ∩ P ) ≥ 1

2
α
α+1vol(P )

}
and N− = N \

N+. Since N = N+ ∪N− and by assumption on N∑
P∈N

vol(P )
vol(S)

≥ (1− ε)η(S)

we must have that either

(a)
∑
P∈N−

vol(P )
vol(S)

≥ 1
2

(1− ε)η(S) or

(b)
∑
P∈N+

vol(P )
vol(S)

≥ 1
2

(1− ε)η(S).

Assume first that (a) is true. We will show that
S1 and S2 take up a small fraction of most partition
parts and that consequently S3 must take up a large
fraction of S. Take P ∈ N−, and let SP1 = S1∩P, SP2 =
S2 ∩ P, SP3 = S3 ∩ P . By assumption on Pε we know
that vol(SP1 ) = αvol(SP2 ). Therefore we have that

vol(SP1 ) + vol(SP2 ) =
α+ 1
α

vol(SP1 ) ≤ 1
2
vol(P )

by assumption on N−. Since vol(SP1 ) + vol(SP2 ) +
vol(SP3 ) = vol(P ), we must have that vol(SP3 ) ≥
1
2vol(P ). Therefore, we have that

vol(S3)
vol(S)

≥
∑
P∈N−

vol(SP3 )
vol(S)

≥
∑
P∈N−

1
2

vol(P )
vol(S)

≥ 1
4

(1− ε)η(S).

Since d(S1,S2)
D ≤ 1, this proves the theorem for case (a).

Now assume that (a) is not true. Then we must
have that (b) is true to satisfy our assumption on N .
Now take P ∈ N+. Our strategy here will be to derive
isoperimetry for P using the fact that P is ε-convex.
By approximating the measure of P by that of its
convex approximation, we will derive an isoperimetric
inequality for P with an additive error depending on ε.
Since in this case S1 and S2 take up a lower bounded
fraction of P , we will be able to transform the additive
error into multiplicative error by making ε sufficiently
small. The statement will follow as a result.

So let Q be a convex body such that vol(P 4
Q) ≤ εmin {vol(P ), vol(Q)}. We may assume that
Q ⊆ conv.hull(P ), since otherwise Q ∩ conv.hull(P )
is a convex body and strictly closer to P . Next,
since Diam(P ) = Diam(conv.hull(P )) we have that
Diam(Q) ≤ Diam(P ) ≤ Diam(S) = D.

Let πP , πQ denote the uniform measures on P,Q

respectively. Let SQ1 = SP1 ∩ Q,S
Q
2 = SP2 ∩ Q and

SQ3 = Q \ (SQ1 ∪ S
Q
2 ). Since (SP1 , S

P
3 , S

P
2 ) partition P ,

we note that SQ3 = (SP3 ∩ Q) ∪ (Q \ P ). Then we have
that d(SQ1 , S

Q
2 ) ≥ d(SP1 , S

P
2 ) ≥ d(S1, S2). By lemma 3.1

we know that dtv(πQ, πP ) ≤ ε, hence we see that

πQ(SQi ) = πQ(SPi ) ≥ πP (SPi )−ε ≥ πP (SPi )−3ε : i = 1, 2,

and

πQ(SQ3 ) ≤ πP (SQ3 ) + ε = πP (SQ3 ∩ P ) + ε

≤ πQ(SQ3 ∩ P ) + 2ε = πQ(SP3 ) + 2ε

≤ πP (SP3 ) + 3ε

Since Q is convex, using the isoperimetric inequality
proved in [LS93] we have that

πQ(SQ3 ) ≥ d(SQ1 , S
Q
2 )

Diam(Q)
min

{
πQ(SQ1 ), πQ(SQ2 )

}
≥ d(S1, S2)

D
min

{
πQ(SQ1 ), πQ(SQ2 )

}
Now bringing the above inequalities together, we get
that

πP (SP3 )+3ε ≥ d(S1, S2)
D

min
{
πP (SP1 )− 3ε, πP (SP2 )− 3ε

}
⇒

πP (SP3 ) ≥ d(S1, S2)
D

min
{
πP (SP1 )− 3ε, πP (SP2 )− 3ε

}
−3ε

⇒

πP (SP3 ) ≥ d(S1, S2)
D

(
πP (SP1 )− 3ε

)
− 3ε

since πP (SP1 ) ≤ πP (SP2 ). Now choose

ε ≤ min
{
ε0
12
d(S1, S2)

D

α

α+ 1
,
ε0
12

α

α+ 1

}
where ε0 > 0. Since P ∈ N+ we have that

vol(SP1 ) ≥ 1
2

α

α+ 1
vol(P )⇒ πP (SP1 ) ≥ 1

2
α

α+ 1

Hence 3ε ≤ ε0
4

α
α+1 ≤

ε0
2 πP (SP1 ). A simple computation

now gives us that

πP (SP3 ) ≥ (1− ε0)
1
2
d(S1, S2)

D

α

α+ 1
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Now vol(SP3 ) = πP (SP3 )vol(P ), so we see that

vol(S3) ≥
∑
P∈N+

vol(SP3 )

≥ (1− ε0)
1
2
d(S1, S2)

D

α

α+ 1

∑
P∈N+

vol(P )

≥ (1− ε0)
d(S1, S2)

D

α

α+ 1
(1− ε)η(S)

2
vol(S)

≥ (1− ε0)(1− ε)η(S)
4D

d(S1, S2)vol(S1)

Finally, letting ε0 → 0 yields the result.

The proof of Theorem 1.2 follows a similar proof
strategy as Theorem 1.1. We need the following lemma
about second moments.

Lemma 3.6. Let f1, . . . , fm : Rn → R+ be densities
with associated random variables X1, . . . , Xm and cen-
troids µ1, . . . , µm respectively. Let g =

∑m
i=1 pifi be a

mixture of the fis with associated random variable Y
and centroid µ. Then we have that

E[‖Y − µ‖2] =
m∑
i=1

pi
(
E[‖Xi − µi‖2] + ‖µi − µ‖2

)
Proof. Since g is a mixture, we note that

(1) E[‖Y − µ‖2] =
m∑
i=1

piE[‖Xi − µ‖2]

Now ‖Xi − µ‖2 = 〈Xi − µ,Xi − µ〉. Now we have that

E[〈Xi−µ,Xi−µ〉] = E[〈Xi−µi+(µi−µ), Xi−µi+(µi−µ)〉]

Expanding the above we get

E[‖Xi − µi‖2] + 2E[〈Xi − µi, µi − µ〉] + E[‖µi − µ‖2] =

E[‖Xi − µi‖2] + ‖µi − µ‖2

where the equality holds since E[Xi−µi] = 0, and µi, µ
are constant vectors. Plugging the above into (1) yields
the result.

Proof. [Proof of Theorem 1.2 (Second moment
isoperimetry)] Let (S1, S3, S2) be the measurable
partition of S. We may assume vol(S1) ≤ vol(S2) and

so α = vol(S1

vol(S2)
≤ 1. Let Pε, N , N+, N− be defined as

in the proof of Theorem 1.1. Again as in Theorem 1.1
we have the cases (a) and (b). If case (a) occurs, then
by the proof of Theorem 1.1 we have that

vol(S3) ≥ 1
4

(1− ε)η(S)vol(S)

as needed. So we may assume assume that we are in
case (b), i.e that∑

P∈N+

vol(P )
vol(S)

≥ 1
2

(1− ε)η(S)

Now for each P ∈ Pε, let πP denote the uniform
measure on P , µP denote the centroid of P , and let
MP = EP [‖X − µP ‖2]. Now we note that πS , the
uniform measure on S, is a mixture of the πP s, i.e.

πS =
∑
P∈Pε

vol(P )
vol(S)

πP

Therefore by Lemma 3.6 we have that

MS =
∑
P∈Pε

vol(P )
vol(S)

(
MP + ‖µP − µS‖2

)
≥
∑
P∈N+

vol(P )
vol(S)

MP .

Let V =
∑
P∈N+ vol(P ). By assumption V ≥ 1

2 (1 −
ε)η(S)vol(S), and hence∑

P∈N+

vol(P )
V

MP ≤
∑
P∈N+

2
(1− ε)η(S)

vol(P )
vol(S)

≤ 2
(1− ε)η(S)

MS .

Let N∗ =
{
P : P ∈ N+,MP ≤ 4

(1−ε)η(S)MS

}
. Since∑

P∈N+
vol(P )
V MP is an average of positive numbers by

Markov’s inequality we must have that∑
P∈N∗

vol(P ) ≥ 1
2
V ≥ 1

4
(1− ε)η(S)vol(S)

Now take P ∈ N∗. By assumption on N∗ ⊆
N , there exists Q a convex body such that vol(P 4
Q) ≤ εmin {vol(P ), vol(Q)}. In particular, by the
construction of Lemma 3.3 we may assume that Q ⊆ P .
Let Q̄ = P \ Q, and let πQ̄, πQ denote the uniform
measures on Q̄,Q respectively. We now see that

πP =
vol(Q̄)
vol(P )

πQ̄ +
vol(Q)
vol(P )

πQ

As done previously above from Lemma 3.6 we readily
see that

MP ≥
vol(Q)
vol(P )

MQ

⇒ vol(P )
vol(Q)

MP ≥ MQ

⇒ (1 + ε)MP ≥ MQ.

1638 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

4/
21

 to
 1

30
.1

26
.1

62
.1

26
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



As in the proof of Theorem 1.1, let SQ1 = SP1 ∩ Q,
SQ2 = SP2 ∩ Q, and SQ3 = Q \ (SQ1 ∪ S

Q
2 ). Since Q is a

convex set, using the isoperimetric inequality proved in
[KLS95] we get that

πQ(SQ3 ) ≥ d(SQ1 , S
Q
2 )

2
√
MQ

min
{
πQ(SQ1 ), πQ(SQ2 )

}
≥

(
d(S1, S2)

2
√

(1 + ε)MP

)
min

{
πQ(SQ1 ), πQ(SQ2 )

}

≥

 d(S1, S2)√
8(1+ε)MS

(1−ε)η(S)

min
{
πQ(SQ1 ), πQ(SQ2 )

}
Using the same analysis as in Theorem 1.1, the above
inequality gives us that

πP (SP3 ) ≥

 d(S1, S2)√
8(1+ε)MS

(1−ε)η(S)

 (πP (SP1 )− 3ε)

Now choose

ε ≤
( ε0

12

)( α

α+ 1

)
min

 d(S1, S2)√
8(1+ε)MS

(1−ε)η(S)

, 1


for any ε0 > 0. By the same analysis as in Theorem 1.1,
we get that

πP (SP3 ) ≥

 d(S1, S2)√
8(1+ε)MS

(1−ε)η(S)

( (1− ε0)α
α+ 1

)

Using the fact that
∑
P∈N∗ vol(P ) ≥ 1

4 (1− ε)η(S)vol(S)
we get that

vol(S3) ≥
∑
P∈N∗

vol(SP3 )

≥

 d(S1, S2)√
8(1+ε)MS

(1−ε)η(S)

 (1− ε0)α
α+ 1

∑
P∈N∗

vol(P )

≥

 d(S1, S2)√
8(1+ε)MS

(1−ε)η(S)

 (1− ε)(1− ε0)η(S)α
4(α+ 1)

vol(S)

≥

 d(S1, S2)√
8(1+ε)MS

(1−ε)η(S)

 (1− ε0)(1− ε)η(S)
4

vol(S1)

≥ (1− ε0)(1− ε) 3
2

(1 + ε)
1
2

(
η(S)

3
2 d(S1, S2)

16
√
MS

)
vol(S1)

Finally, letting ε0 → 0 yields the result.

4 Conductance and mixing time

4.1 Local Conductance. Ball walk on star-shaped
bodies could potentially get stuck in points with very
low local conductance. Here we prove that most of the
points in a star-shaped body have good local conduc-
tance. First, we extend a lemma from [KLS97] from
convex bodies to star-shaped bodies which leads to the
proof of good local conductance. The proof is essentially
identical to the case of convex bodies.

Lemma 4.1. Let vn = voln(Bn(0, 1)). Let L be a
measurable subset of the surface of a star-shaped set S
in Rn and let

SL := {(x, y) : x ∈ S, y /∈ S, ||x− y|| ≤ r, [x, y]∩L 6= ∅}.

Then the 2n−dimensional measure of S∂S for any mea-
surable subset ∂S of the surface of S satisfies

vol(S∂S) ≥ r
(

vn−1

vn(n+ 1)

)
vol(Bn(0, r))voln−1(∂S)

Proof. [Proof of Lemma 4.1 (Measure across surface)]
For a measurable partition ∂S = ∪ki=1Li, by the
definition of SL we see that

vol(L) ≤
k∑
i=1

vol(SLi).

On the other hand, the surface areas are additive i.e.

voln−1(L) =
k∑
i=1

voln−1(Li).

Hence, if for each partition element we can show

(1) vol(SLi) ≤ r
(

vn−1

vn(n+ 1)

)
vol(Bn(0, r))voln−1(Li),

then we get that

vol(S∂S) ≤
k∑
i=1

voln−1(Li)

≤
k∑
i=1

r

(
vn−1

vn(n+ 1)

)
vol(Bn(0, r))voln−1(Li)

= r

(
vn−1

vn(n+ 1)

)
vol(Bn(0, r))voln−1(∂S).

By standard approximation arguments, we may assume
that ∂S is a piecewise linear n−1-dimensional manifold
(i.e. ∂S is obtained by gluing n − 1 dimensional
polytopes). Hence, we can partition ∂S into L1, . . . , Lk
where each Li, 1 ≤ i ≤ k is “flat”, i.e. is contained
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inside an n − 1 dimensional hyperplane. By the above
computations it clearly suffices to prove (1) for each
piece of this partition.

Let L be one of the pieces in this partition, and
let H denote the hyperplane containing L. Let C(r, t)
denote the volume of a ball of radius r intersected with
a halfspace at distance t from the center of the ball.
Then we see that

vol(SL) =
∫
x:x∈S

∫
y:(x,y)∈SL

dydx

≤
∫ r

t=0

∫
d(x,H)=t
d(x,L)≤r

∫
y:(x,y)∈SL

dydxdt

≤
∫ r

t=0

∫
d(x,H)=t
d(x,L)≤r

C(r, t)dxdt

where the last inequality follows since L ⊆ H. Contin-
uing we see that

vol(SL) ≤
∫ r

t=0

∫
d(x,H)=t
d(x,L)≤r

C(r, t)dxdt

≤
∫
x∈L

∫ r

t=0

C(r, t)dtdx

= voln−1(L)
∫ r

t=0

∫ r

s=t

(√
r2 − s2

)n−1

vn−1dsdt

= voln−1(L)
∫ r

s=0

s
(√

r2 − s2
)n−1

vn−1ds

= r

(
vn−1

vn(n+ 1)

)
vol(Bn(0, r))voln−1(L)

as needed.

Recall that the local conductance of a point x ∈ S
is defined as l(x) = vol(Bn(x,r)∩S)

vol(Bn(0,r))
.

Corollary 4.1. Suppose that S is a star shaped body
with kernel KS satisfying Bn(0, 1) ⊆ KS. Let X be
a random vector uniformly distributed in S. Then
λ = E[l(X)], the average local conductance of S with
respect to ball walk with step size r, is at least

λ ≥ 1− r
√
n

2

Proof. [Proof of Corollary 4.1 (Average Local Conduc-
tance)]

λ =
1

vol(S)

∫
S

l(x) =
1

vol(S)

∫
S

vol(Bn(x, r) ∩ S)
vol(Bn(0, r))

dx

=
1

vol(S)

∫
S

vol(Bn(x, r))− vol(Bn(x, r) \ S)
vol(Bn(0, r))

= 1− 1
vol(S)vol(Bn(0, r))

∫
S

vol(Bn(x, r) \ S)

= 1− vol(S∂S)
vol(S)vol(Bn(0, r))

≤ 1−
(

rvn−1

vn(n+ 1)

)
voln−1(∂S)

vol(S)

where the last equality follows by the definition of SL,
and the last inequality from the bound in Lemma 4.1.
Now for n ≥ 3, we have that

1−
(

rvn−1

vn(n+ 1)

)
voln−1(∂S)

vol(S)
≥ 1−

(
r

2
√
n

)
voln−1(∂S)

vol(S)

The corollary follows once we lower bound the
volume of S in terms of its surface area. Since S is star-
shaped and 0 ∈ KS , the volume of S can be written
as the sum of infinitesimal cones whose apex is at the
origin and whose base corresponds to an infinitesimal
piece of the boundary of S. The volume of any such cone
is simply the base area (surface area on ∂S) times the
height of the cone divided by n. Since Bn(0, 1) ∈ KS ,
the hyperplane defined by the base of our infinitesimal
cones cannot cut Bn(0, 1) and hence the height of every
cone is at least 1. Summing up the volume of all these
cones, we get that

vol(S) ≥ voln−1(∂S)
n

and hence

λ ≥ 1−
(

r

2
√
n

)
voln−1(∂S)

vol(S)
≥ 1− r

√
n

2

as needed.

The following lemma is the main result of this
section.

Lemma 4.2. Let S ⊆ Rn be a star-shaped body with
kernel KS satisfying Bn(0, 1) ⊆ KS. Let r be the step-
size of the ball walk, where r < 1/(2

√
n). Define

Sr := {x ∈ S : l(x) ≥ 3
4
}

Then, we have that

1. vol(Sr) ≥ (1− 2r
√
n)vol(S)
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2. vol(KSr ≥ (1− 2r
√
n)vol(KS)

3. Sr is star-shaped.

Proof. [Proof of Lemma 4.2 (Body of good local con-
ductance)] Using Corollary 4.1, we get that

1
vol(S)

∫
S

(1− l(x))dx ≥
(

1− r
√
n

2

)
vol(S)

E(1− l(X)) ≤ r
√
n

2

Pr

(
vol(Bn(x, r) ∩ S̄)

vol(Bn(0, r))
≥ 1

4

)
≤ 2r

√
n

Pr

(
l(x) ≥ 3

4

)
≥ (1− 2r

√
n)

vol(Sr)
vol(S)

≥ (1− 2r
√
n)

Now applying the same argument as above to KS ,
we get that the set (KS)r, i.e the set of points with
local conductance at least 3/4 with respect to the
ball walk of step size r on KS , satisfies vol((KS)r) ≥
(1 − 2r

√
n)vol(KS). Clearly, the local conductance of

a point x ∈ KS with respect to KS is at least its local
conductance with respect to S, and hence (KS)r ⊆ Sr.
We claim that (KS)r ⊆ KSr . Take x ∈ (KS)r and
y ∈ Sr. Examine z = αx + (1 − α)y where 0 ≤ α ≤ 1.
Then we see that

vol(Bn(z, r) ∩ S)
vol(Bn(0, r))

≥

vol(α(Bn(x, r) ∩KS) + (1− α)(Bn(y, r) ∩ S))
vol(Bn(0, r))

≥

vol(Bn(x, r) ∩KS)αvol(Bn(y, r) ∩ S)1−α

vol(Bn(0, r))
≥ 3

4

and hence z ∈ Sr as needed. Therefore

vol(KSr ) ≥ vol((KS)r) ≥ (1− 2r
√
n)vol(KS)

which gives us (2). To get (3), we note that by our
assumption on r, we have that vol(KSr ) > 0 and hence
KSr non-empty. Therefore Sr is star-shaped as needed.

4.2 Coupling. In this section, we prove that the
one-step distributions of two nearby points in S with
good local conductance are close to each other. This
will be crucial for establishing a lower bound on the
conductance of the ball walk.

Lemma 4.3. Let S be a star-shaped body and let u, v ∈
S such that |u− v| ≤ tr√

n
, l(u), l(v) ≥ l. Then

dTV (Pu, Pv) ≤ 1 + t− l

Proof. [Proof of Lemma 4.3 (Coupling lemma)] We
prove the inequality in the case when both Bn(u, r)
and Bn(v, r) are contained within S. If not, then the
considered case gives an upper bound and hence, we
are done. Let C(r, t) be the volume of a ball of radius
r intersected with a halfspace at distance t from the
origin.

dTV (Pu, Pv) =
1
2

∫
x∈Bn(u,r)∪Bn(v,r)

|Pu(x)− Pv(x)|dx

=
1
2
|Pu(u)− Pv(u)|+ 1

2
|Pu(v)− Pv(v)|

+
1
2

∫
x∈Bn(u,r)∩Bn(v,r)\u\v

|Pu(x)− Pv(x)|dx

+
1
2

∫
x∈Bn(u,r)∩Bn(v,r)\u

(Pu(x)− Pv(x))dx

+
1
2

∫
x∈Bn(v,r)∩Bn(u,r)\v

(Pv(x)− Pu(x))dx

=
1
2

(1− l(u)) +
1
2

(1− l(v)) + 0

+
1
2

∫
x∈Bn(u,r)∩Bn(v,r)\u

(Pu(x)− Pv(x))dx

+
1
2

∫
x∈Bn(v,r)∩Bn(u,r)\v

(Pv(x)− Pu(x))dx

= 1− l +
2vol(Bn(0, r))− 2C(r, tr√

n
))

2vol(Bn(0, r))
≤ 1− l + t

4.3 Conductance. Now, we bound the
s−conductance of the ball walk on a star-shaped
body.

Lemma 4.4. Let S ⊆ Rn be a star-shaped body of
diameter D with kernel KS satisfying Bn(0, 1) ⊆ KS.
Let η = η(S), i.e. the fraction of vol(S) taken up
by the kernel KS. Then the ball walk with step-size
r = s/(4

√
n) has s-conductance at least sη

213nD .

Proof. [Proof of Lemma 4.4 (s-conductance)] By
Lemma 4.2, we have that

vol(Sr) ≥ (1− s

2
)vol(S).

Further, the fraction of the volume of the kernel of Sr
is

η(Sr) =
vol(KSr )
vol(S)

≥ (1− s/2)vol(KS)
vol(S)

= (1− s

2
)η

Now, let A ∪ Ā be any partition of S into measurable
sets with vol(A), vol(Ā) > s(vol(S)). Define sets

A1 := {x ∈ A ∩ Sr : Px(Ā) <
1
16
}
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A2 := {x ∈ Ā ∩ Sr : Px(A) <
1
16
}

A3 := Sr\A1\A2

Now, suppose that vol(A1) ≤ vol(S)
3 . Then the conduc-

tance φs(A, Ā) is at least

1
min{vol(A), vol(Ā)}

∫
x∈A∩Sr\A1

1
16
dx

=
1

min{vol(A), vol(Ā)}
1
16

vol(A ∩ Sr\A1)

≥ 1
min{vol(A), vol(Ā)}

1
16

(vol(A\A1)− vol(S\Sr))

≥ 1
min{vol(A), vol(Ā)}

1
16

(
2
3
vol(A)− s

2
vol(S))

≥ 1
min{vol(A), vol(Ā)}

1
16

(
2s
3

vol(S)− s

2
vol(S))

≥ 1
min{vol(A), vol(Ā)}

s

32
vol(S)

≥ 1
32

and hence we are done. Therefore, we may assume that
vol(A1) ≥ vol(A)

3 and vol(A2) ≥ vol(Ā)
3 .

Consider u ∈ A1 and v ∈ A2. Then,

dTV (Pu, Pv) ≥ 1− Pu(Ā)− Pv(A) > 1− 1
8

Using Lemma 4.3 (t=1/8), we get |u − v| ≥ 5r
8
√
n

, and
hence, d(A1, A2) ≥ 5r

8
√
n

. Now, using Theorem 1.1 on
the partition A1, A2, A3 of Sr, we get that

Φs ≥ 1
min{vol(A), vol(Ā)}

∫
A

Px(Ā)dx

≥ 1
2

1
16

vol(A3)
min{vol(A), vol(Ā)}

≥ 1
25

η(Sr)d(A1, A2)
4D

min{vol(A1), vol(A2)}
min{vol(A), vol(Ā)}

≥ 1
29

η(5r(1− s/2))
8
√
nD

min{vol(A), vol(Ā)}
min{vol(A), vol(Ā)}

≥ 1
212

s(1− s/2)η
nD

≥ 1
213

sη

nD

Using Theorem 1.2, one can derive the following
bound by proceeding similarly as in the proof of the
above lemma.

Lemma 4.5. Let S ⊂ Rn be a star-shaped body of
diameter D with Bn(0, 1) ⊆ KS. Let η(S) = η, i.e. the

fraction of vol(S) in the kernel KS. Then for the ball
walk with radius r = s/4

√
n, for any partition A, Ā of S

satisfying vol(A), vol(Ā) > s(vol(S)), the s-conductance
of A satisfies

φs(A) ≥ η

29
min

{
vol(S)

min{vol(A), vol(Ā)}
,
s

27n

√
η

MS

}
4.4 Mixing time Let πS denote the uniform distri-
bution over the star-shaped body. Let σm denote the
distribution after m-steps of the ball walk on the star-
shaped body. To relate the s-conductance to the mixing
time, we use the following lemma from [LS93].

Lemma 4.6. Let 0 < s ≤ 1/2 and Hs =
supπS(A)≤s |σ0(A)− πS(A)|. Then for every measurable
A ⊆ Rn and every m ≥ 0,

|σm(A)− πS(A)| ≤ Hs +
Hs

s

(
1− φ2

s

2

)m
.

Proof. (of Theorem 1.3) Suppose σ0 be a starting dis-
tribution such that there exists M > 0, ∀A ⊆ S,
σ0(A) ≤ MπS(A). Now, by definition Hs ≤ M · s.
Hence, using Lemma 4.6 and Lemma 4.4,

dTV (σm, πS) ≤M · s+M

(
1− s2η2

227n2D2

)m
≤M · s+Me−ms

2η2/227n2D2
.

Replacing s by ε/2M , for m ≥ 229n2D2M2

η2ε2 log 2M
ε , we

have dTV (σm, πS) ≤ ε.

5 Sampling algorithm

To obtain a polynomial-time sampling algorithm we
make the additional assumption that we are given an
oracle to the kernel of the star-shaped body, a point x0

in the kernel and parameters r,R such that Bn(x0, r)
lies in the kernel and the kernel is contained in a ball of
radius R. The sampling algorithm proceeds as follows:

1. Use the algorithm of [LV07, LV06a] to find a
transformation of the body S into isotropic position
and obtain a random point x0 in KS .

2. Perform m ball-walk steps from x0 on the trans-
formed body S′, for each desired random point.

Clearly, by step 1 above, we have a 1
η -warm start for

the ball-walk on S′. Now, by Lemma 4.5, to obtain a
bound on the s-conductance, we need an upper bound
on the mean square distance MS′ of the body S′.
We next show that when the kernel is isotropic, the
body is not far from isotropic. This will bound MS′

which along with Lemma 4.5 and Lemma 4.6 would
prove Theorem 1.4.
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Lemma 5.1. Let S be a star-shaped body and let KS be
the kernel of S. For a vector v ∈ Rn, ‖v‖ = 1, define

fS(t) = voln−1(
{
x : vTx = t, x ∈ Rn

}
∩ S) and

fK(t) = voln−1(
{
x : vTx = t, x ∈ Rn

}
∩KS),

the cross-sectional volumes for S and KS in direction v.
Then for x ∈ supp(fK) and y ∈ supp(fS) and α ∈ [0, 1]
we have that

fS(αx+ (1−α)y)
1

n−1 ≥ αfK(x)
1

n−1 + (1−α)fS(y)
1

n−1 .

Furthermore, for all x, y ∈ R we get that

fS(αx+ (1− α)y) ≥ fK(x)αfS(y)1−α

Proof. [Proof of Lemma 5.1 (Relation between cross-
sectional volume of kernel and body)] Let S(t),KS(t)
denote the cross-sections of S and KS in direction v
at t. Since x ∈ supp(fK), y ∈ supp(fS) we have that
KS(x), S(y) 6= ∅. Since KS(x) is part of the kernel we
have that

αKS(x) + (1− α)S(y) ⊆ S(αx+ (1− α)y).

Therefore by the Brunn-Minkowski inequality we have
that

αfK(x)
1

n−1 + (1− α)fS(y)
1

n−1

≤ voln−1(αKS(x) + (1− α)KS(y))
1

n−1

≤ voln−1(S(αx+ (1− α)y))
1

n−1 = fS(αx+ (1− α)y)
1

n−1

For the furthermore, we note that the statement is
trivial if either fK(x) = 0 or fS(y) = 0. Therefore, we
may assume that x ∈ supp(fK), y ∈ supp(fS). Since the
harmonic average is always smaller than the geometric
average, the statement follows directly from our first
inequality.

Lemma 5.2. Let S ⊆ Rn be a star-shaped body with
an isotropic kernel KS such that η = vol(KS)/vol(S).
Then, in any direction v, for a random point X from
KS, we have

E((vTX)2) ≤ 3328
η2

.

Proof. [Proof of Lemma 5.2 (Second moment of body
with isotropic kernel)] Let v = (1, 0, . . . , 0)T w.l.o.g.
Consider the cross-sectional density fK induced by the
kernel along v. Since KS is isotropic, we have that
fK(0) ≥ 1

8 [LV06b].
Next let f be the cross-sectional density of the body

S along v. It follows that

f(0) ≥ ηfK(0) ≥ η

8
.

Let a = sup
{
x : f(x) < ηfK(0)

2 , x ≤ 0
}

and b =

inf
{
x : f(x) < ηfK(0)

2 , x ≥ 0
}

. We claim that b − a ≤
2

ηfK(0) . Suppose not, then∫ b

a

f(x) dx ≥ ηfK(0)
2

(b− a) > 1.

Now consider a point x = tb for t > 1. Then by Lemma
5.1 we have that

f(b) = f

((
1− 1

t

)
0 +

1
t
x

)
≥ (ηfK(0))1− 1

t f(x)
1
t ⇒

f(b)t(ηfK(0))1−t ≥ f(x)⇒ ηfK(0)
(

f(b)
ηfK(0)

)t
≥ f(x)

The same inequality as above can be derived starting
from any b′ > b, and since for every such b′ we have
that f(b′) < ηfK(0)

2 by continuity we have that for t > 1

f(x) ≤ ηfK(0)
(

1
2

)t
= ηfK(0)e− ln 2t

By a symmetric argument, the same bound holds for
x = ta. Let p =

∫ b
a
f(x)dx. The following calculation

gives the result:

E((vTx)2) ≤
∫ ∞
−∞

x2f(x) dx

= p

(
1
p

∫ b

a

x2f(x)

)

+
∫ a

−∞
x2f(x)dx+

∫ ∞
b

x2f(x)dx

≤ pmax
{
a2, b2

}
+ ηfK(0)

[∫ a

−∞
x2e− ln 2(x/a) dx+

∫ ∞
b

x2e− ln 2(x/b) dx

]
= pmax

{
a2, b2

}
+ ηfK(0)(a3 + b3)

(
1

2 ln 2
+

1
(ln 2)2

+
1

(ln 2)3

)
≤ (a2 + b2) + (2a2 + 2b2)6 = 13(a2 + b2)

≤ 13
4

η2fK(0)2
≤ 3328

η2
.

Proceeding similarly as in the proof of Theorem 1.3,
one can derive the proof of Theorem 1.4.

Proof. [Proof of Theorem 1.4 (Polynomial time amor-
tized sampling)] Lemma 5.2 gives an upper bound on
MS ≤ 212n

η2 . Using Lemma 4.5, we get that the s-
conductance of the ball walk on a star-shaped body
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S ⊆ Rn with the kernel in isotropic position and
η = vol(KS)/vol(S) satisfies

Φs ≥
η5/2s

221n3/2

By the sampling algorithm of [LV07, LV06a], Step 1
of the sampling algorithm takes O∗(n4) oracle queries.
Since in step 2 of the algorithm, we started the ball-walk
on S by choosing a random point from the kernel, and
the kernel takes up at least an η fraction of the volume
of S, a random point from it provides an (1/η)-warm
start. Proceeding similarly as in the proof of Theorem
1.3, we get that after m > 244n3

η4ε2 log 2
ηε ball walk steps,

dTV (σm, πS) ≤ ε. Hence, by performing m-steps of the
ball-walk for each desired sample, we obtain the desired
amortized bound.

6 Optimization over star-shaped body

Here we prove that optimization over a star-shaped
body is NP-hard. In particular, we reduce the clique
problem to linear optimization over a star-shaped poly-
hedron.

Definition 6.1. An instance of CLIQUE(k) is given
by a graph G(V,E). The problem is to decide if there
exists clique of size greater than k.

It is well-known that CLIQUE(k) is NP-hard. We
shall show that NP-hardness of optimization over a
star-shaped body does not depend on the fraction of
volume of the kernel. The main result we present here
essentially follows from a theorem of Luedtke et al.
[LSN07]. We simply modify their construction to ensure
that the kernel of the set we construct is large. We
present the complete proof here for completeness.

Theorem 6.1. Given a star-shaped polytope S, it is
NP-hard to optimize a linear function over this body for
any η(S) < 1, even if S is well-rounded.

Proof. [Proof of Theorem 6.1] We reduce solving
CLIQUE(k) to minimizing a linear function over a star-
shaped body. Given a CLIQUE(k) instance G(V,E),
define variables x ∈ Rn. For each edge e = (i, j), define
ψe ∈ Rn,

ψel =
{

1 if l = i or l = j,
0 otherwise.

For every edge e, denote the set of constraints given by
x ≥ ψe as a block constraint. Consider the following

formulation:

Minimizef(x) =
n∑
i=1

xi, satisfying at least
(
k

2

)
block constraints among:

∀e ∈ E, x ≥ ψe(6.1)

Define the feasible polyhedron as S.

Lemma 6.1. The feasible polyhedron S defined by the
above formulation is star-shaped.

Proof. First note that any subset of block constraints
among the given constraints define a convex body.
Thus, the feasible polyhedron is a union of convex
bodies. Further, x = (1 1 . . . 1)T satisfies all the
constraints and hence, we have a non-empty kernel.

Lemma 6.2. By adding new constraints, a new feasible
star-shaped polyhedron S′ can be created such that η(S′)
is a constant.

Proof. Clearly xi ≥ 1 ∀i ∈ {1, ..., n} is a feasible
convex region contained in KS . Therefore, by adding
constraints xi ≤ a ∀ i ∈ {1, ..., n}, for appropriately
chosen value of a(> 1), one can make η(S′) a constant.
Note that the set 1 ≤ xi ≤ a ∀ i ∈ {1, ..., n} is still
a feasible convex region contained in K ′S . Specifically,
one can choose a = n, to see that

η(S′) ≥
(
n− 1
n

)n
≥ 1
e

Lemma 6.3. There exists a clique of size k in G(V,E),
if and only if there exists x ∈ S such that f(x) ≤ k.

Proof. Suppose the graph has a clique C(V ′, E′) of size
k. Then, consider x∗ ∈ Rn such that x∗v = 1 ∀ v ∈ V ′.
Now, for every edge e = (i, j) ∈ E′, x∗ ≥ ψe is satisfied
since, x∗i = ψei = 1 and x∗j = ψej = 1 and x∗k ≥ 0 for
k ∈ V , k 6= i, j. Since C is a clique, |E′| =

(
k
2

)
and

therefore,
(
k
2

)
block constraints will be satisfied which

implies that x∗ ∈ S. It is straightforward to check that
f(x∗) = k.
Suppose there exists x̄ ∈ S such that f(x̄) ≤
k. The objective function f(x) can be rewritten as
minF⊆E:|F |≥(k2){

∑n
i=1 maxe∈F {ψei }}. Hence, there ex-

ists F̄ ⊆ E, |F̄ | ≥
(
k
2

)
, such that the edges in F̄ cover

at most k vertices. Clearly, this is possible only when
F̄ defines a clique of size k.

Suppose there exists an algorithm A to optimize over
a star-shaped body P given as an oracle such that
η(P ) ≥ c. Now, given an instance of CLIQUE(k), we
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formulate the linear programming problem as above.
Following Lemma 6.2 we can find an appropriate value
of a and add constraints such that η(S) ≥ c. Further,
it is easy to make S contain a unit ball based on the
value of a. Finally, the oracle queries can be answered
by checking the number of block constraints satisfied by
the point x. Hence, we may use A to minimize f(x). Let
z be the objective value obtained by optimizing using A.
Using Lemma 6.3, it is clear that if z ≤ k, CLIQUE(k)
is a “Yes” instance, otherwise CLIQUE(k) is a “No”
instance.

7 Discussion

We have presented isoperimetric inequalities and ef-
ficient sampling algorithms for star-shaped bodies,
through a new technique called thin partitions. We
note that linear optimization is NP-hard on these bod-
ies, even when the kernel takes up a constant fraction
of the body. Thus, quite unlike convex bodies, linear
optimization is NP-hard over star-shaped bodies, but
sampling remains tractable.

Given the sampling algorithm, we can also estimate
the volume as follows: given an oracle for the kernel, we
can sample from KS and obtain the volume estimate for
KS using [LV07, LV06a]; further, given that η(S) ≥ η
we can also estimate η(S) using O( 1

η2ε2 ) samples and
output the product of the two as the estimate for
volume.

We believe the thin partition approach should be
broadly applicable to proving inequalities in convex
geometry, especially for inequalities that do not seem
reducible to one-dimensional versions (e.g., the KLS
hyperplane conjecture [KLS95]).
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