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ABSTRACT
We study the problem of answering k-way marginal queries
on a database D ∈ ({0, 1}d)n, while preserving differential
privacy. The answer to a k-way marginal query is the frac-
tion of the database’s records x ∈ {0, 1}d with a given value
in each of a given set of up to k columns. Marginal queries
enable a rich class of statistical analyses on a dataset, and de-
signing efficient algorithms for privately answering marginal
queries has been identified as an important open problem
in private data analysis. For any k, we give a differentially

private online algorithm that runs in time poly
(
n, 2o(d)

)
per query and answers any sequence of poly(n) many k-way
marginal queries with error at most ±0.01 on every query,
provided n & d0.51. To the best of our knowledge, this is
the first algorithm capable of privately answering marginal
queries with a non-trivial worst-case accuracy guarantee for
databases containing poly(d, k) records in time exp(o(d)).
Our algorithm runs the private multiplicative weights algo-
rithm (Hardt and Rothblum, FOCS ’10) on a new approxi-
mate polynomial representation of the database.

We derive our representation for the database by approx-
imating the OR function restricted to low Hamming weight

∗Supported by Simons Fellowship.
†Supported by an NSF Graduate Research Fellowship and
NSF grants CNS-1011840 and CCF-0915922.
‡Supported by NSF grant CNS-1237235 and a Siebel Schol-
arship.
§On leave from IIIS, Tsinghua University. This work was
completed while at Harvard University and supported by
NSF grant CCF-0964401 and NSFC grant 61250110218.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITCS’14, January 12–14, 2014, Princeton, New Jersey, USA.
Copyright 2014 ACM 978-1-4503-2698-8/14/01 ...$15.00.
http://dx.doi.org/10.1145/2554797.2554833.

inputs using low-degree polynomials with coefficients of
bounded L1-norm. In doing so, we show new upper and
lower bounds on the degree of such polynomials, which may
be of independent approximation-theoretic interest.

1. INTRODUCTION
Consider a database D ∈ ({0, 1}d)n in which each of the

n(= |D|) rows corresponds to an individual’s record, and
each record consists of d binary attributes. The goal of
privacy-preserving data analysis is to enable rich statisti-
cal analyses on the database while protecting the privacy of
the individuals. In this work, we seek to achieve differential
privacy [10], which guarantees that no individual’s data has
a significant influence on the information released about the
database.

One of the most important classes of statistics on a dataset
is its marginals. A marginal query is specified by a set
S ⊆ [d] and a pattern t ∈ {0, 1}|S|. The query asks, “What
fraction of the individual records in D has each of the at-
tributes j ∈ S set to tj?” A major open problem in privacy-
preserving data analysis is to efficiently release a differen-
tially private summary of the database that enables analysts
to answer each of the 3d marginal queries. A natural subclass
of marginals are k-way marginals, the subset of marginals
specified by sets S ⊆ [d] such that |S| ≤ k.

Privately answering marginal queries is a special case of
the more general problem of privately answering counting
queries on the database, which are queries of the form,
“What fraction of individual records in D satisfy some prop-
erty q?” Early work in differential privacy [2, 9, 10] showed
how to privately answer any set of counting queries Q ap-
proximately by perturbing the answers with appropriately
calibrated noise, ensuring good accuracy (say, within ±.01

of the true answer) provided |D| & |Q|1/2.
However, in many settings data is difficult or expensive

to obtain, and the requirement that |D| & |Q|1/2 is too
restrictive. For instance, if the query set Q includes all
k-way marginal queries then |Q| ≥ dΘ(k), and it may be

impractical to collect enough data to ensure |D| & |Q|1/2,
even for moderate values of k. Fortunately, a remarkable
line of work initiated by Blum et al. [3] and continuing
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with [11, 14, 17–19, 21, 28], has shown how to privately re-
lease approximate answers to any set of counting queries,
even when |Q| is exponentially larger than |D|. For ex-
ample, the online private multiplicative weights algorithm
of Hardt and Rothblum [19] gives accurate answers to any
(possibly adaptively chosen) sequence of queries Q provided

|D| &
√
d log |Q|. Hence, if the sequence consists of all k-

way marginal queries, then the algorithm will give accurate
answers provided |D| & k

√
d. Unfortunately, all of these

algorithms have running time at least 2d per query, even in
the simplest setting where Q is the set of 2-way marginals.

Given this state of affairs, it is natural to seek efficient al-
gorithms capable of privately releasing approximate answers
to marginal queries even when |D| � dk. The most efficient
algorithm known for this problem, due to Thaler, Ullman,
and Vadhan [34] (building on the work of Hardt, Rothblum,

and Servedio [20]) runs in time dO(
√
k) and releases a sum-

mary from which an analyst can compute the answer to any

k-way marginal query in time dO(
√
k).

Even though |D| can be much smaller than |Q|1/2, a major
drawback of this algorithm and other efficient algorithms for
releasing marginals (e.g. [7,12,15,16,20]) is that the database

still must be significantly larger than Θ̃(k
√
d), which we

know would suffice for inefficient algorithms. Recent exper-
imental work of Hardt, Ligett, and McSherry [18] demon-
strates that for some databases of interest, even the 2d-time
private multiplicative weights algorithm is practical, and
also shows that more efficient algorithms based on adding
independent noise do not provide good accuracy for these
databases. Motivated by these findings, we believe that an
important approach to designing practical algorithms is to
achieve a minimum database size comparable to that of pri-
vate multiplicative weights, and seek to optimize the running
time of the algorithm as much as possible. In this paper we
give the first algorithms for privately answering marginal
queries for this parameter regime.

1.1 Our Results
In this paper we give faster algorithms for privately an-

swering marginal queries on databases of size Õ(d0.51/ε),
which is nearly the smallest a database can be while ad-
mitting any differentially private approximation to marginal
queries [6].

Theorem 1.1. There exists a constant C > 0 such that
for every k, d, n ∈ N, k ≤ d, and every ε, δ > 0, there is an
(ε, δ)-differentially private online algorithm that, on input a
database D ∈ ({0, 1}d)n, runs in time

poly
(
n,min

{
exp

(
d1−1/C

√
k
)
, exp

(
d/ log0.99 d

)})
per query and answers any sequence Q of (possibly adaptively
chosen) k-way marginal queries on D up to an additive error
of at most ±0.01 on every query with probability at least 0.99,
provided that n ≥ Cd0.51 log |Q| log(1/δ)/ε.

When k is much smaller than d, it may be useful to view
our algorithm as an offline algorithm for releasing answers
to all k-way marginal queries. This offline algorithm can be
obtained simply by requesting answers to each of the dΘ(k)

distinct k-way marginal queries from the online mechanism.
In this case we obtain the following corollary.

Corollary 1.2. There exists a constant C > 0 such that
for every k, d, n ∈ N, k = O(d/ log d), and every ε, δ > 0,
there is an (ε, δ)-differentially private offline algorithm that,
on input a database D ∈ ({0, 1}d)n, runs in time

poly
(
n,min

{
exp

(
d1−1/C

√
k
)
, exp

(
d/ log0.99 d

)})
and, with probability at least 0.99, releases answers to every
k-way marginal query on D up to an additive error of at
most ±0.01, provided that n ≥ Ckd0.51 log(1/δ)/ε.

Here
(
d
≤k

)
:=
∑k
i=0

(
d
i

)
, and the number of k-way marginals

on {0, 1}d is bounded by a polynomial in this quantity. See
Table 1 for a comparison of relevant results on privately
answering marginal queries.

Remarks.

1. When k = Ω(log2 d), the minimum database size re-
quirement can be improved to

n ≥ Ckd0.5+o(1) log(1/δ)/ε,

but we have stated the theorems with a weaker bound
for simplicity. (Here C > 0 is a universal constant and
the o(1) is with respect to d.)

2. Our algorithm can be modified so that instead of re-
leasing approximate answers to each k-way marginal
explicitly, it releases a summary of the database of

size Õ(kd0.01) from which an analyst can compute an
approximate answer to any k-way marginal in time

Õ(kd1.01).

A key ingredient in our algorithm is a new approximate
representation of the database using polynomial approxima-
tions to the d-variate OR function restricted to inputs of
Hamming weight at most k. For any such polynomial, the
degree determines the runtime of our algorithm, while the
L1-weight of the coefficient vector determines the minimum
required database size. Although low-degree low L1-weight
polynomial approximations to the OR function have been
studied in the context of approximation theory and learn-
ing theory [29], our setting requires an approximation only
over a restricted subset of the inputs. When the polynomial
needs to approximate the OR function only on a subset of
the inputs, is it possible to reduce the degree and L1-weight
(in comparison to [29]) of the polynomial?

Our main technical contribution addresses this variant of
the polynomial approximation problem. We believe that
our construction of such polynomials (Theorem 1.3) as well
as the lower bound (Theorem 1.4) could be of indepen-
dent approximation-theoretic interest. The following theo-
rem shows a construction of polynomials that achieve better
degree and L1-weight in comparison to [29] for small values
of k. Let ORd : {−1, 1}d → {−1, 1} denote the OR function
on d variables with the convention that −1 is TRUE, and
for any vector x ∈ {−1, 1}d, let |x| denote the number of
coordinates of x equal to −1.

Theorem 1.3. Let k ∈ [d]. For some constant C > 0,
there exists a polynomial p such that

(i) |p(x)−ORd(x)| ≤ 1/400 for every x ∈ {−1, 1}d : |x| ≤
k,
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Reference Running Time per Query Database Size

[2, 9, 10,13] O(1) Õ(dk/2)

[17,19] 2O(d) Õ(k
√
d)

[20,34] dO(
√
k) dO(

√
k)

[12] dO(k) Õ(ddk/2e/2)

This paper 2O(d/ log0.99 d) kd0.5+o(1)

This paper 2d
1−Ω(1/

√
k)

Õ(kd.51)

Table 1: Prior results on differentially private release of k-way marginals with error ±0.01 on every marginal.
(The running time ignores dependence on the database size, privacy parameters, and the time required to
evaluate the query non-privately.)

(ii) the L1-weight of the coefficient vector of p is at most
d0.01, and

(iii) the degree of p is at most

min

{
d

1− 1
C
√

k ,
d

log0.995 d

}
.

The degree bound of d/ log0.995 d in the above theorem
follows directly from techniques developed in [29], while the

degree bound of d
1− 1

C
√

k requires additional insight. We also
show a lower bound to exhibit the tightness of our construc-
tion.

Theorem 1.4. Let k = o(log d), and let p be a real d-
variate polynomial satisfying |p(x) − ORd(x)| ≤ 1/6 for all
x ∈ {−1, 1}d with |x| ≤ k. If the L1-weight of the coeffi-

cient vector of p is dO(1), then the degree of p is at least

d1−O(1/
√
k).

We note that our algorithmic approach for designing effi-
cient private data release algorithms would work equally well
if we have any small set of functions whose low-L1-weight
linear combinations approximate disjunctions restricted to
inputs of Hamming weight at most k. Our lower bound
limits the applicability of our approach if we choose to use
low-degree monomials as the set of functions. We observe
that this also rules out several natural candidates that can
themselves be computed exactly by a low-weight polyno-
mial of low-degree (e.g., the set of small-width conjunctions).
There is some additional evidence from prior work that low-
degree monomials may be the optimal choice: if we only care
about the size of the set of functions used to approximate
disjunctions on inputs of Hamming weight at most k, then
prior work shows that low-degree monomials are indeed op-
timal [31] (see also Section 5 in the full version of [34]). It
remains an interesting open question to determine whether
this optimality still holds when we restrict the L1 weight of
the linear combinations used in the approximations to be
poly(d).

1.2 Techniques
For notational convenience, we focus on monotone k-way

disjunction queries. However, our results extend straight-
forwardly to general non-monotone k-way marginal queries
via simple transformations on the database and queries. A
monotone k-way disjunction is specified by a set S ⊆ [d] of
size k and asks what fraction of records in D have at least
one of the attributes in S set to 1.

Following the approach introduced by Gupta et al. [16]
and developed into a general theory in [20], we view the
problem of releasing answers to conjunction queries as a
learning problem. That is, we view the database as spec-
ifying a function fD : {−1, 1}d → [0, 1], in which each input
vector s ∈ {−1, 1}d is interpreted as the indicator vector of
a set S ⊆ {1, . . . , d}, with si = −1 iff i ∈ S, and fD(s)
equals the evaluation of the conjunction query specified by
S on the database D. Then, our goal is to privately learn
to approximate the function fD; this is accomplished in [20]
by approximating fD succinctly with polynomials and learn-
ing the polynomial privately. Polynomial approximation is
central to our approach as well, as we explain below.

We begin with a description of how the parameters of the
online learning algorithm determine the parameters of the
online differentially private learning algorithm. We consider
the “IDC framework” [17]—which captures the private mul-
tiplicative weights algorithm [19] among others [17,21,28]—
for deriving differentially private online algorithms from any
online learning algorithm that may not necessarily be pri-
vacy preserving.

Informally, an online learning algorithm is one that takes
a (possibly adaptively chosen) sequence of inputs s1, s2, . . .
and returns answers a1, a2, . . . to each, representing“guesses”
about the values fD(s1), fD(s2), . . . for the unknown func-
tion fD. After making each guess ai, the learner is given
some information about the value of fD(si). The quanti-
ties of interest are the running time required by the online
learner to produce each guess ai and the number of “mis-
takes” made by the learner, which is the number of rounds i
in which ai is “far” from fD(si). Ultimately, for the differen-
tially private algorithm derived in the IDC framework, the
notion of far will correspond to the accuracy, the per query
running time will essentially be equal to the running time of
the online learning algorithm, and the minimum database
size required by the private algorithm will be proportional
to the square root of the number of mistakes.

We next describe the well-known technique of deriving
faster online learning algorithms that commit fewer mistakes
using polynomial approximations to the target function. In-
deed, it is well-known that if fD can be approximated to
high accuracy by a d-variate polynomial pD : {−1, 1}d → R
of degree t and L1-weight at most W , where the weight is
defined to be the sum of the absolute values of the coeffi-
cients, then there is an online learning algorithm that runs
in time poly

((
d
≤t

))
and makes O(W 2d) mistakes. Thus, if

t� d, the running time of such an online learning algorithm
will be significantly less than 2d and the number of mistakes

389



(and thus the minimum database size of the resulting private
algorithm) will only blow up by a factor of W .

Consequently, our goal boils down to constructing the best
possible polynomial representation pD for any database D –
one with low-degree, low-L1-weight such that |pD(s)−fD(s)|
is small for all vectors s ∈ {−1, 1}d corresponding to mono-
tone k-way disjunction queries. To accomplish this goal, it
is sufficient to construct a low-degree, low-L1-weight poly-
nomial that can approximate the d-variate OR function on
inputs of Hamming weight at most k (i.e., those that have
−1 in at most k indices). Such problems are well-studied
in the approximation-theory literature, however our variant
requires polynomials to be accurate only on a restricted sub-
set of inputs. In fact, the existence of a polynomial with de-
gree d/ log0.99 d and L1-weight do(1) that approximates the
d-variate OR function on all inputs follows from the work of
Servedio et al. [29]. We improve these bounds for small val-
ues of k by constructing an approximating polynomial that

has degree d1−Ω(1/
√
k) and L1-weight d0.01.

We also prove a new approximation-theoretic lower bound
for polynomials that seek to approximate a target function
for a restricted subset of inputs. Specifically, we show that
for any k = o(log d), any polynomial p of weight poly(d) that
satisfies |p(s) − OR(s)| ≤ 1/6 for all inputs s ∈ {−1, 1}d of

Hamming weight at most k must have degree d1−O(1/
√
k).

We prove our lower bound by expressing the problem of
constructing such a low-weight, low-degree polynomial p as
a linear program, and exhibiting an explicit solution to the
dual of this linear program. Our proof is inspired by recent
work of Sherstov [30,31,33] and Bun-Thaler [5].

1.3 Related Work
Other Results on Privately Releasing Marginals. In
work subsequent to our result, Dwork et al. [12] show how
to privately release marginals in a very different parameter
regime. Their algorithm is faster than ours, running in time
poly(

(
d
≤k

)
), and has better dependence on the error parame-

ter. However, their algorithm requires that the database size

is Ω̃(ddk/2e/2) for answering with error ±0.01. This size is

comparable to the optimal Ω̃(k
√
d) only when k ≤ 2. In con-

trast, our algorithm has nearly-optimal minimum database
size for every choice of k.

While we have focused on accurately answering every k-
way marginal query, or more generally every query in a se-
quence of marginal queries, several other works have consid-
ered more relaxed notions of accuracy. These works show
how to efficiently release a summary of the database from
which an analyst can efficiently compute an approximate an-
swer to marginal queries, with the guarantee that the aver-
age error of a marginal query is at most .01, when the query
is chosen from a particular distribution. In particular, Feld-
man and Kothari [15] achieve small average error over the
uniform distribution with running time and database size
Õ(d2); Gupta et al. [16] achieve small average error over
any product distribution with running time and minimum
database size poly(d); finally Hardt et al. [20] show how to
achieve small average error over arbitrary distributions with

running time and minimum database size 2Õ(d1/3). All of
these results are based on the approach of learning the func-
tion fD.

Several works have also considered information theoretic
bounds on the minimum database size required to answer

k-way marginals. Kasiviswanathan et al. [22] showed that

|D| ≥ min{1/α2, dk/2/α} is necessary to answer all k-way
marginals with error ±α. De [8] extended this result to hold
even when accuracy ±α can be violated for a constant frac-
tion of k-way marginals. In our regime, where α = Ω(1),
their results do not give a non-trivial lower bound. In forth-
coming work, Bun, Ullman, and Vadhan [6] have proven a

lower bound of |D| ≥ Ω̃(k
√
d), which is nearly optimal for

α = Ω(1).
Hardness of Differential Privacy. Ullman [35] (building

on the results of Dwork et al. [11]), showed that any 2o(d)-
time differentially private algorithm that answers arbitrary
counting queries can only give accurate answers if |D| &
|Q|1/2, assuming the existence of exponentially hard one-

way functions. Our algorithms have running time 2o(d) and
are accurate when |D| � |Q|1/2, and thus show a separation
between answering marginal queries and answering arbitrary
counting queries.

When viewed as an offline algorithm for answering all k-
way marginals, our algorithm will return a list of values con-
taining answers to each k-way marginal query. It would in
some cases be more attractive if we could return a synthetic

database, which is a new database D̂ ∈ ({0, 1}d)n̂ whose

rows are “fake”, but such that D̂ approximately preserves
many of the statistical properties of the database D (e.g.,
all the marginals). Some of the previous work on counting
query release has provided synthetic data [1, 3, 11,14,18].

Unfortunately, Ullman and Vadhan [36] (building on [11])
have shown that no differentially private sanitizer with run-
ning time poly(d) can take a database D ∈ ({0, 1}d)n and

output a private synthetic database D̂, all of whose 2-way
marginals are approximately equal to those of D, assuming
the existence of one-way functions. They also showed that
under certain strong cryptographic assumptions, there is no

differentially private sanitizer with running time 2d
1−Ω(1)

can output a private synthetic database, all of whose 2-way
marginals are approximately equal to those of D. Our algo-
rithms indeed achieve this running time and accuracy guar-
antee when releasing k-way marginals for constant k, and
thus it may be inherent that our algorithms do not generate
synthetic data.
Approximation Theory. Servedio et al. [29] focused on
developing low-weight, low-degree polynomial threshold func-
tions (PTFs) for decision lists, motivated by applications in
computational learning theory. As an intermediate step in
their PTF constructions, they constructed low-L1-weight,
low-degree polynomials that approximate the OR function
on all Boolean inputs. Our construction of lower-weight,
lower-degree polynomials that approximate the OR function
on low Hamming weight inputs is inspired by and builds on
Servedio et al.’s construction of approximations that are ac-
curate on all Boolean inputs.

The proof of our lower bound is inspired by recent work
that has established new approximate degree lower bounds
via the construction of dual solutions to certain linear pro-
grams. In particular, Sherstov [30] showed that approx-
imate degree and PTF degree behave roughly multiplica-
tively under function composition, while Bun and Thaler [5]
gave a refinement of Sherstov’s method in order to resolve
the approximate degree of the two-level AND-OR tree, and
also gave an explicit dual witness for the approximate de-
gree of any symmetric Boolean function. We extend these
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lower bounds along two directions: (1) we show degree lower
bounds that take into account the L1-weight of the coeffi-
cient vector of the approximating polynomial, and (2) our
lower bounds hold even when we only require the approx-
imation to be accurate on inputs of low Hamming weight,
while prior work only considered approximations that are
accurate on all Boolean inputs.

Some prior work has studied the degree of polynomials
that point-wise approximate partial Boolean functions [32,
33]. Here, a function f : Y → R is said to be partial if its
domain Y is a strict subset of {−1, 1}d, and a polynomial p
is said to ε-approximate f if

1. |f(x)− p(x)| ≤ ε for all x ∈ Y , and

2. |p(x)| ≤ 1 + ε for all x ∈ {−1, 1}d \ Y .

In contrast, our lower bounds apply even in the absence
of Condition 2, i.e., when p(x) is allowed to take arbitrary
values on inputs in {−1, 1}d \ Y .

Finally, while our motivation is private data release, our
approximation theoretic results are similar in spirit to recent
work of Long and Servedio [25], who are motivated by appli-
cations in computational learning theory. Long and Servedio
consider halfspaces h defined on inputs of small Hamming
weight, and (using different techniques very different from
ours) give upper and lower bounds on the weight of these
halfspaces when represented as linear threshold functions.

Organization. In Section 3, we describe our private online
algorithm and show that it yields the claimed accuracy given
the existence of sufficiently low-weight polynomials that ap-
proximate the d-variate OR function on inputs of low Ham-
ming weight. The results of this section are a combination
of known techniques in differential privacy [17, 19, 28] and
learning theory (see e.g., [24]). Readers familiar with these
literatures may prefer to skip Section 3 on first reading. In
Section 4, we give our polynomial approximations to the OR
function, both on low Hamming weight Boolean inputs and
on all Boolean inputs. Finally, in Section 5, we state and
prove our lower bounds for polynomial approximations to
the OR function on restricted inputs.

2. PRELIMINARIES

2.1 Differentially Private Sanitizers
Let a database D ∈ ({0, 1}d)n be a collection of n rows

x(1), . . . , x(n) from a data universe {0, 1}d. We say that two
databases D,D′ ∈ ({0, 1}d)n are adjacent if they differ only
on a single row, and we denote this by D ∼ D′.

Let A : ({0, 1}d)n → R be an algorithm that takes a
database as input and outputs some data structure inR. We
are interested in algorithms that satisfy differential privacy.

Definition 2.1 (Differential Privacy [10]). An al-
gorithm A : ({0, 1}d)n → R is (ε, δ)-differentially private if
for every two adjacent databases D ∼ D′ ∈ ({0, 1}d)n and
every subset S ⊆ R,

Pr [A(D) ∈ S] ≤ eε Pr
[
A(D′) ∈ S

]
+ δ.

Since a sanitizer that always outputs ⊥ satisfies Defini-
tion 2.1, we focus on sanitizers that are accurate. In par-
ticular, we are interested in sanitizers that give accurate

answers to counting queries. A counting query is defined
by a boolean predicate q : {0, 1}d → {0, 1}. Abusing nota-
tion, we define the evaluation of the query q on a database
D ∈ ({0, 1}d)n to be q(D) = 1

n

∑n
i=1 q(x

(i)). Note that the
value of a counting query is in [0, 1]. We use Q to denote a
set of counting queries.

For the purposes of this work, we assume that the range of
A is simply R|Q|. That is, A outputs a list of real numbers
representing answers to each of the specified queries.

Definition 2.2 (Accuracy). The output of A(D), a =
(aq)q∈Q, is α-accurate for the query set Q if

∀q ∈ Q, |aq − q(D)| ≤ α

A sanitizer is (α, β)-accurate for the query set Q if for every
database D, A(D) outputs a such that with probability at
least 1 − β, the output a is α-accurate for Q, where the
probability is taken over the coins of A.

We remark that the definition of both differential privacy
and (α, β)-accuracy extend straightforwardly to the online
setting. Here the algorithm receives a sequence of ` (possibly
adaptively chosen) queries from Q and must give an answer
to each before seeing the rest of the sequence. Here we
require that with probability at least 1 − β, every answer
output by the algorithm is within ±α of the true answer on
D. See e.g., [19] for an elaborate treatment of the online
setting.

2.2 Query Function Families
Given a set of queries of interest, Q (e.g., all marginal

queries), we think of the database D as specifying a func-
tion fD mapping queries q to their answers q(D). We now
describe this transformation more formally:

Definition 2.3 (Q-Function Family). Let

Q = {qy}y∈YQ⊆{−1,1}m

be a set of counting queries on a data universe {0, 1}d, where
each query is indexed by an m-bit string. We define the
index set of Q to be the set YQ = {y ∈ {−1, 1}m | qy ∈ Q}.

We define the Q-function family

FQ = {fx : {−1, 1}m → [0, 1]}x∈{0,1}d

as follows: For every possible database row x ∈ {0, 1}d, the
function fx : {−1, 1}m → [0, 1] is defined as fx(y) = qy(x).
Given a database D ∈ ({0, 1}d)n we define the function
fQ,D : {−1, 1}m → [0, 1] where fQ,D(y) = 1

n

∑n
i=1 fx(i)(y).

When Q is clear from context we will drop the subscript Q
and simply write fx, fD, and F .

When Q is the set of all monotone k-way disjunctions
on a database D ∈ ({0, 1}d)n, the queries are defined by
sets S ⊆ [d] , |S| ≤ k. In this case, we represent each
query by the d-bit −1/1 indicator vector yS of the set S,
where yS(i) = −1 if and only if i ∈ S. Thus, yS has at
most k entries that are −1. Hence, we can take m = d and

YQ =
{
y ∈ {−1, 1}d |

∑d
j=1 1{yi=−1} ≤ k

}
.

2.3 Low-Weight Polynomial Approximations
Given an m-variate real polynomial p : {−1, 1}m → R,

p(y) =
∑
S⊆[m]

cS ·
∏
i∈S

yi,
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we define the degree, weight w(·) and non-constant weight
w∗(·) of the polynomial as follows:

deg(p) := max{|S| : S ⊆ [m], cS 6= 0},

w(p) :=
∑
S⊆[m]

|cS |, and

w∗(p) :=
∑

S⊆[m],S 6=∅

|cS |.

We use
(

[m]
≤t

)
to denote {S ⊆ [m] | |S| ≤ t} and

(
m
≤t

)
=∣∣∣([m]

≤t

)∣∣∣ =
∑t
j=0

(
m
j

)
.

We will attempt to approximate the functions

fx : {−1, 1}m → {0, 1}

on all the indices in YQ by a family of polynomials with low
degree and low weight. Formally and more generally:

Definition 2.4. [RESTRICTED APPROXIMATION
BY POLYNOMIALS] Given a function f : Y → R, where
Y ⊆ Rm, and a subset Y ′ ⊆ Y , we denote the restriction
of f to Y ′ by f |Y ′ . Given an m-variate real polynomial p,
we say that p is a γ-approximation to the restriction f |Y ′ ,
if |f(y) − p(y)| ≤ γ ∀y ∈ Y ′. Notice there is no restriction
whatsoever placed on p(y) for y ∈ Y \ Y ′.

Given a family of m-variate functions

F = {fx : Y → R}x∈{0,1}d ,

where Y ⊆ Rm, a set Y ′ ⊆ Y we use F|Y ′ = {fx|Y ′}x∈{0,1}d
to denote the family of restricted functions. Given a family
P of m-variate real polynomials, we say that the family P
is a γ-approximation to the family F|Y ′ if for every x ∈
{0, 1}d, there exists px ∈ P that is a γ-approximation to
fx|Y ′ .

Let Hm,k = {x ∈ {−1, 1}m :
∑m
i=1(1− xi)/2 ≤ k} denote

the set of inputs of Hamming weight at most k. We view
the d variate OR function, ORd as mapping inputs from
{−1, 1}d to {−1, 1}, with the convention that −1 is TRUE
and 1 is FALSE. Let Pt,W (m) denote the family of all m-
variate real polynomials of degree t and weight W . For the
upper bound, we will show that for certain small values of
t and W , the family Pt,W (d) is a γ-approximation to the
family of all disjunctions restricted to Hd,k.

Fact 2.5. If Q is the set of all monotone k-way disjunc-
tions on a database D ∈ ({0, 1}d)n, F is its function fam-
ily, and Y = Hd,k is its index set, then Pt,W (d) is a γ-
approximation to the restriction F|Y if and only if there is
a degree t polynomial of weight O(W ) that γ-approximates
ORd|Hd,k .

The fact follows easily by observing that for any x ∈
{0, 1}d, y ∈ {−1, 1}d,

fx(y) =
∨
i∈x

1{yi=−1} =
1−ORd(y

x1
1 , . . . , y

xd
d )

2
.

For the lower bound, we will show that any collection of
polynomials with small weight that is a γ-approximation to
the family of disjunctions restricted to Hm,k should have
large degree. We need the following definitions:

Definition 2.6 (Approximate Degree). Given a func-
tion f : Y → R, where Y ⊆ Rm, the γ-approximate degree of
f is

degγ(f) := min{d : ∃ real polynomial p that is a

γ-approximation to f , deg(p) = d}.

Analogously, the (γ,W )-approximate degree of f is

deg(γ,W )(f) := min{d : ∃ real polynomial p that is a

γ-approximation to f , deg(p) = d, w(p) ≤W}.

It is clear that degγ(f) = deg(γ,∞)(f).
We let w∗(f, t) denote the degree-t non-constant margin

weight of f , defined to be:

w∗(f, t) := min{w∗(p) : ∃ real polynomial p s.t.

deg(p) ≤ t, f(y)p(y) ≥ 1 ∀ y ∈ Y }.

The above definitions extend naturally to the restricted func-
tion f |Y ′ .

Our definition of non-constant margin weight is closely re-
lated to the well-studied notion of the degree-t polynomial
threshold function (PTF) weight of f (see e.g., [31]), which
is defined as minp w(p), where the minimum is taken over
all degree-t polynomials p with integer coefficients, such that
f(x) = sign(p(x)) for all x ∈ {−1, 1}d. Often, when study-
ing PTF weight, the requirement that p have integer coeffi-
cients is used only to ensure that p has non-trivial margin,
i.e. that |p(x)| ≥ 1 for all x ∈ {−1, 1}d; this is precisely the
requirement captured in our definition of non-constant mar-
gin weight. We choose to work with margin weight because
it is a cleaner quantity to analyze using linear programming
duality; PTF weight can also be studied using LP duality,
but the integrality constraints on the coefficients of p intro-
duces an integrality gap that causes some loss in the analysis
(see e.g., Sherstov [31, Theorem 3.4] and Klauck [23, Section
4.3]).

3. PRIVATE DATA RELEASE USING LOW-
WEIGHT APPROXIMATIONS

In this section we show that low-weight polynomial ap-
proximations imply data release algorithms that provide ap-
proximate answers even on small databases. The main goal
of this section is to prove the following theorem.

Theorem 3.1. Given α, β, ε, δ > 0, and a family of lin-
ear queries Q with index set Y ⊆ {−1, 1}m. Suppose for
some t ≤ m, W > 0, the family of polynomials Pt,W (m)
(α/4)-approximates the function family FQ|Y . Then there
exists an (ε, δ)-differentially private online algorithm that is
(4α, β)-accurate for any sequence of ` (possibly adaptively
chosen) queries from Q on a database D ∈ ({0, 1}d)n, pro-
vided

n ≥ 128W log (`/β) log (4/δ)

α2ε

√√√√log

(
2

(
m

≤ t

)
+ 1

)
.

The private algorithm has running time that is polynomial

in
(
n,
(
m
≤t

)
, logW, log (1/α), log(1/β), log(1/ε), log(1/δ)

)
.

We note that the theorem can be assembled from known
techniques in the design and analysis of differentially private
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algorithms and online learning algorithms. We include the
proof of the theorem here for the sake of completeness, as to
our knowledge they do not explicitly appear in the privacy
literature.

We construct and analyze the algorithm in two steps.
First, we use standard arguments to show that the non-
private multiplicative weights algorithm can be used to con-
struct a suitable online learning algorithm for fQ,D when-
ever fQ,D can be approximated by a low-weight, low-degree
polynomial. Here, a suitable online learning algorithm is
one that fits into the IDC framework of Gupta et al. [17].
We then apply the generic conversion from IDCs to differ-
entially private online algorithms [17, 19, 28] to obtain our
algorithm.

3.1 IDCs
We start by providing the relevant background on the it-

erative database construction framework. An IDC will main-
tain a sequence of functions f

(1)
D , f

(2)
D , . . . that give increas-

ingly good approximations to the fQ,D. In our case, these
functions will be low-degree polynomials. Moreover, the
mechanism produces the next approximation in the sequence
by considering only one query y(t) that “distinguishes” the
real database in the sense that |f (t)(y(t))−fD(y(t))| is large.

Definition 3.2 (IDC [17,19,28]). Let

Q = {qy}y∈YQ⊆{−1,1}m

be a family of counting queries indexed by m-bit strings. Let
U be an algorithm mapping a function f : YQ → R, a query
y ∈ YQ, and a real number a to a new function f ′. Let
D ∈ ({0, 1}d)n be a database and α > 0 be a parameter.

Consider the following game with an adversary. Let f
(1)
D be

some function. In each round t = 1, 2, . . . :

1. The adversary chooses a query y(t) ∈ YQ (possibly de-

pending on f
(t)
D ).

2. If |f (t)
D (y(t)) − fD(y(t))| > α, then we say that the al-

gorithm has made a mistake.

3. If the algorithm made a mistake, then it receives a
value a(t) ∈ R such that |a(t) − fD(y(t))| ≤ α/2 and

computes a new function f
(t+1)
D = U(f

(t)
D , y(t), a(t)).

Otherwise let f
(t+1)
D = f

(t)
D .

If the number of rounds t in which the algorithm makes
a mistake is at most B for every adversary, then U is a
iterative database construction for Q with mistake bound
B.

Theorem 3.3 (Variant of [17]). For any α > 0, and
any family of queries Q, if there is an iterative database
construction for Q with mistake bound B, then there is an
(ε, δ)-differentially private online algorithm that is (4α, β)-
accurate for any sequence of ` (possibly adaptively chosen)
queries from Q on a database D ∈ ({0, 1}d)n, so long as

n ≥ 32
√
B log(`/β) log(4/δ)

αε
.

Moreover, if the iterative database construction, U, runs
in time TU, then the private algorithm has running time
poly(n, TU, log(1/α), log(1/β), log(1/ε), log(1/δ)) per query.

The IDC we will use is specified in Algorithm 1. The

IDC will use approximations f
(t)
D in the form of low-degree

polynomials of low-weight, and thus we need to specify how
to represent such a function. Specifically, we will represent a
polynomial p as a vector p of length 2

(
m
≤t

)
+1 with only non-

negative entries. For each coefficient S ∈
(

[m]
≤t

)
, the vector

will have two components pS , p¬S . (Recall that
(

[m]
≤t

)
:=

{S ⊆ [m] | |S| ≤ t}.) Intuitively these two entries represent
the positive part and negative part of the coefficient cS of
p. There will also be an additional entry p0 that is used to
ensure that the L1-norm of the vector is exactly 1. Given a
polynomial p ∈ Pt,W with coefficients (cS), we can construct
this vector by setting

pS =
max{0, cS}

W
p¬S =

max{0,−cS}
W

and choosing p0 so that ‖p‖1 = 1. Observe that p0 can
always be set appropriately since the weight of p is at most
W .

Similarly, we want to associate queries with vectors so
that we can replace the evaluation of the polynomial p on a
query y with the inner product W 〈p, y〉. We can do so by
defining the vector y of length 2

(
m
≤t

)
+ 1 such tha y0 = 0,

yS =
∏
i∈S yi and y¬S = −

∏
i∈S yi.

Fact 3.4. For every m-variate polynomial p of degree at
most t and weight at most W , and every query y ∈ {−1, 1}m,
W 〈p, y〉 = p(y).

Algorithm 1 The Multiplicative Weights Algorithm for
Low-Weight Polynomials.

UMW
α (p(t), y(t), a(t)):

Let η ← α/4W .

If: p(t) = ∅ then: output

p(t) =
1

2
(
m
≤t

)
+ 1

(1, . . . , 1)

(representing the constant 0 polynomial).

Else if: a(t) < W 〈p(t), y(t)〉
Let r(t) = y(t)

Else:
Let r(t) = −y(t)

Update: For all I ∈
{

0,
(

[m]
≤t

)
,¬
(

[m]
≤t

)}
let

p
(t+1)
I ← exp(−ηr(t)

I ) · p(t)
I

p(t+1) ← p(t+1)

‖p(t+1)‖1

Output p(t+1).

We summarize the properties of the multiplicative weights
algorithm in the following theorem:

Theorem 3.5. For any α > 0, and any family of linear
queries Q if Pt,W (α/4)-approximates the restriction F|Y
then Algorithm 1 is an iterative database construction for Q
with mistake bound B for

B = B(W,m, t, α) =
16W 2 log

(
2
(
m
≤t

)
+ 1
)

α2
.
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Moreover, U runs in time poly
((
m
≤t

)
, logW, log(1/α)

)
.

Proof. Let D ∈ ({0, 1}d)n be any database. For every
round t in which U makes a mistake, we consider the tuple
(p(t), y(t), â(t)) representing the information used to update
the approximation in round t. In order to bound the number
of mistakes, it will be sufficient to show that after B ≤
16W 2 log(2

(
m
≤t

)
+ 1)/α2, the vector p(t) is such that

∀y ∈ YQ, |W 〈p(t), y〉 − fD(y)| ≤ α.

That is, after making B mistakes p(t) represents a polyno-
mial that approximates fD on every query, and thus there
can be no more than B makes.

First, we note that there always exists a polynomial pD ∈
Pt,W such that

∀y ∈ YQ, |pD(y)− fD(y)| ≤ α

4
. (1)

The assumption of our theorem is that for every x(i) ∈ D,
there exists px(i) ∈ Pt,W such that

∀y ∈ YQ, |px(i)(y)− fx(i)(y)| ≤ α

4
.

Thus, since fD = 1
n

∑n
i=1 fx(i) , the polynomial

pD =
1

n

n∑
i=1

px(i)

will satisfy (1). Note that pD ∈ Pt,W , thus if we represent
pD as a vector,

∀y ∈ YQ, |W 〈pD, y〉 − fD(y)| ≤ α

4
.

Given the existence of pD, we will define a potential func-

tion capturing how far p(t) is from pD. Specifically, we define

Ψt := KL(pD||p
(t)) =

∑
I∈

{
0,([m]
≤t),¬(

[m]
≤t)

} pD,I log

(
pD,I

p
(t)
I

)

to be the KL divergence between pD and the current approx-

imation p(t). Note that the sum iterates over all 2
(
m
≤t

)
+ 1

indices in p. We have the following fact about KL diver-
gence.

Fact 3.6. For all t: Ψt ≥ 0, and Ψ0 ≤ log
(
2
(
m
≤t

)
+ 1
)
.

We will argue that after each mistake the potential drops
by at least α2/16W 2. Note that the potential only changes
in rounds where a mistake was made. Because the potential
begins at log

(
2
(
m
≤t

)
+ 1
)
, and must always be non-negative,

we know that there can be at mostB(α) ≤ 16W 2 log
(
2
(
m
≤t

)
+

1
)
/α2 mistakes before the algorithm outputs a (vector rep-

resentation of) a polynomial that approximates fD on YQ.
The following lemma is standard in the analysis of algo-

rithms based on multiplicative-weights.

Lemma 3.7.

Ψt −Ψt+1 ≥ η
(
〈p(t), r(t)〉 − 〈pD, r

(t)〉
)
− η2

Proof.

Ψt −Ψt+1 =
∑

I∈
{

0,([m]
≤t),¬(

[m]
≤t)

} pD,I log

(
p

(t+1)
I

p
(t)
I

)

= −η〈pD, r
(t)〉

− log

 ∑
I∈

{
0,([m]
≤t),¬(

[m]
≤t)

} exp(−ηr(t)
I )p

(t)
I


≥ −η〈pD, r

(t)〉

− log

 ∑
I∈

{
0,([m]
≤t),¬(

[m]
≤t)

} p
(t)
I (1 + η2 − ηr(t)

I )


≥ η

(
〈p(t), r(t)〉 − 〈pD, r

(t)〉
)
− η2

The rest of the proof now follows easily. By the condi-
tions of an iterative database construction algorithm, |â(t)−
fD(y(t))| ≤ α/2. Hence, for each t such that |W 〈p(t), y(t)〉−
fD(y(t))| ≥ α, we also have that W 〈p(t), y(t)〉 > fD(y(t)) if

and only if W 〈p(t), y(t)〉 > â(t).

In particular, if r(t) = y(t), then

W 〈p(t), y(t)〉 −W 〈pD, y
(t)〉 ≥ α/2.

Similarly, if r(t) = −y(t), then

W 〈pD, y
(t)〉 −W 〈p(t), y(t)〉 ≥ α.

Here we have utilized the fact that |pD(y) − fD(y)| ≤ α/4.
Therefore, by Lemma 3.7 and the fact that η = α/4W :

Ψt −Ψt+1 ≥
α

4W

(
〈p(t), r(t)〉 − 〈pD, r

(t)〉
)
− α2

16W 2

≥ α

4W

( α

2W

)
− α2

16W 2
=

α2

16W 2

Theorem 3.1 follows immediately from Theorems 3.3 and
3.5.

4. UPPER BOUNDS
Fact 2.5 and Theorem 3.1 show that in order to develop

a differentially private mechanism that can release all k-
way marginals of a database, it is sufficient to construct a
low-weight polynomial that approximates the ORd, on all
Boolean inputs of Hamming weight at most k. This is the
purpose to which we now turn.

The ORd function is easily seen to have an exact polyno-
mial representation of constant weight and degree d (see Fact
4.3 below); however, an approximation with smaller degree
may be achieved at the expense of larger weight. The best
known weight-degree tradeoff, implicit in the work of Serve-
dio et al. [29], can be stated as follows: there exists a polyno-

mial p of degree t and weight (d log (1/γ)/t)(d(log 1/γ)2/t) that
γ-approximates the function ORd on all Boolean inputs, for
every t larger than

√
d log (1/γ). Setting the degree t to be

O(d/ log0.99 d) yields a polynomial of weight at most d0.01

that approximates the ORd function on all Boolean inputs to
any desired constant accuracy. On the other hand, Lemma 8
of [29] can be shown to imply that any polynomial of weight
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W that 1/3-approximates the ORd function requires degree
Ω(d/ logW ), essentially matching the O(d/ log.99 d) upper

bound of Servedio et al. when W = dΩ(1).
However, in order to privately release k-way marginals,

we have shown that it suffices to construct polynomials that
are accurate only on inputs of low Hamming weight. In this
section, we give a construction that achieves significantly
improved weight degree trade-offs in this setting. In the next
section, we demonstrate the tightness of our construction by
proving matching lower bounds.

We construct our approximations by decomposing the d-
variate OR function into an OR of OR’s, which is the same
approach taken by Servedio et al. [29]. Here, the outer OR
has fan-in m and the inner OR has fan-in d/m, where the
subsequent analysis will determine the appropriate choice of
m. In order to obtain an approximation that is accurate
on all Boolean inputs, Servedio et al. approximate the outer
OR using a transformation of the Chebyshev polynomials of
degree

√
m, and compute each of the inner OR’s exactly.

For k � log2 d, we are able to substantially reduce the
degree of the approximating polynomial, relative to the con-
struction of Servedio et al., by leveraging the fact that we
are interested in approximations that are accurate only on
inputs of Hamming weight at most k. Specifically, we are
able to approximate the outer OR function using a poly-
nomial of degree only

√
k rather than

√
m, and argue that

the weight of the resulting polynomial is still bounded by a
polynomial in d.

We now proceed to prove the main lemmas. For the sake
of intuition, we begin with weight-degree tradeoffs in the
simpler setting in which we are concerned with approximat-
ing the ORd function over all Boolean inputs. The following
lemma, proved below for completeness, is implicit in the
work of [29].

Lemma 4.1. For every γ > 0 and m ∈ [d], there is a
polynomial of degree t = O((d/

√
m) log(1/γ)) and weight

W = mO(
√
m log(1/γ)) that γ-approximates the ORd function.

Our main contribution in this section is the following
lemma that gives an improved polynomial approximation
to the ORd function restricted to inputs of low Hamming
weight.

Lemma 4.2. For every γ > 0, k < d and m ∈ [d] \ [k],

there is a polynomial of degree t = O(d
√
k log(1/γ)/m) and

weight W = mO(
√
k log(1/γ)) that γ-approximates the ORd

function restricted to inputs of Hamming weight at most k.

For any constant γ, one may take m = dO(1/
√
k) in the

lemma (here the choice of constant depends on the constants

in Fact 4.4) and obtain a polynomial of degree d1−Ω(1/
√
k)

and weight d0.01.
Our constructions use the following basic facts.

Fact 4.3. The real polynomial pd : {−1, 1}d → R

pd(x) = 2

∑
S⊆[d]

2−d
∏
i∈S

xi

− 1 = 2

d∏
i=1

(
1 + xi

2

)
− 1

computes ORd(x) and has weight w(pd) ≤ 3.

Fact 4.4. [see e.g., [34]] For every k ∈ N and γ > 0,
there exists a univariate real polynomial p =

∑tk
i=0 cix

i of
degree tk such that

1. tk = O(
√
k log(1/γ)),

2. for every i ∈ [tk], |ci| ≤ 2O(
√
k log(1/γ)),

3. p(0) = 0, and

4. for every x ∈ [2k], |p(x)− 1| ≤ γ/2.

Proof of Lemma 4.1. We can compute ORd(y) as a dis-
junction of disjunctions by partitioning the inputs y1, . . . , yd
into blocks of size d/m and computing:

ORm(ORd/m(y1, . . . , yd/m), . . . ,ORd/m(yd−d/m+1, . . . , yd)).

In order to approximately compute ORd(y), we compute the
inner disjunctions exactly using the polynomial pd/m given
in Fact 4.3 and approximate the outer disjunction using the
polynomial from Fact 4.4. Let

Z(y) = pd/m(y1, . . . , yd/m) + · · ·+ pd/m(yd−d/m+1, . . . , yd).

Setting k = m in Fact 4.4, let qm be the resulting polynomial

of degree O(
√
m log(1/γ)) and weight O(m

√
m log (1/γ)). Our

final polynomial is

1− 2qm(m− Z(y)).

Note that m− Z(y) takes values in {0, . . . ,m} and is 0 ex-
actly when all inputs y1, . . . , yd are FALSE. It follows that
our final polynomial indeed approximates ORd to additive
error γ on all Boolean inputs.

We bound the degree and weight of this polynomial in
y. By Fact 4.3, the inner disjunctions are computed exactly
using degree d/m and weight at most 3. Hence, the total
degree is O(

√
m log(1/γ) · d/m). To bound the weight, we

observe that the outer polynomial qm(·) has at most T =

mO(
√
m log(1/γ)) terms where each one has degree at most

Douter = O(
√
m log(1/γ)) and coefficients of absolute value

at most couter = 2O(
√
m log (1/γ)). Expanding the polynomials

for Z(y), the weight of each term incurs a multiplicative

factor of cinner ≤ 3Douter = 3O(
√
m log 1/γ) so the total weight

is at most cinner · couter · T = mO(
√
m log 1/γ).

Proof of Lemma 4.2. Again we partition the inputs y1,
. . . , yd into blocks of size d/m and view the disjunction as:

ORm(ORd/m(y1, . . . , yd/m), . . . ,ORd/m(yd−d/m+1, . . . , yd)).

Once again, we compute the inner disjunctions exactly using
the polynomial from Fact 4.3. Let

Z(y) = pd/m(y1, . . . , yd/m) + · · ·+ pd/m(yd−d/m+1, . . . , yd).

If the input y has Hamming weight at most k, then Z(y)
also takes values in {m, . . . ,m−2k}. Thus, we may approx-
imate the outer disjunction using a polynomial of degree
O(
√
k log(1/γ)) from Fact 4.4. Our final polynomial is:

1− 2qk(m− Z).

The bound on degree and weight may be obtained as in the
previous lemma.

4.1 Proof of upper bound theorems
We first present the proof of Theorem 1.3.
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Proof of Theorem 1.3. Taking

m = O
(
(log d/ log log d)2)

in Lemma 4.1 and m = dO(1/
√
k) in Lemma 4.2, it follows

that for some constant C > 0, the d-variate disjunction re-
stricted to Hd,k is (1/400)-approximated by a d-variate real
polynomial of degree t and weight W where

t = min

{
d

1− 1
C
√

k ,
d

log0.995 d

}
and W = d0.01.

Proof of Theorem 1.1. By Theorem 1.3, we have a
polynomial p that (1/400)-approximates the function
ORd|Hd,k . Moreover, p has weight W <= d0.01 and degree

t ≤ min

{
d

1− 1
C
√

k ,
d

log0.995 d

}
.

Thus, by Fact 2.5, we have a family of polynomials Pt,W (d)
that (1/400)-approximates the function family FQ|Hd,k . We
have the ingredients needed to apply Theorem 3.1. Taking
α = 1/100, β = 1/100 gives the conclusion.

Remark 1 in the Introduction follows from using a slightly
different choice of m in Lemma 4.1, namely

m = O(log2 d/ log3 log d).

To obtain the summary of the database promised in Re-
mark 2, we request an answer to each of the k-way marginal
queries B(1/400) times. Doing so, will ensure that we ob-
tain a maximal database update sequence, and it was ar-
gued in Section 2.1 that the polynomial resulting from any
maximal database update sequence accurately answers ev-
ery k-way marginal query. Finally, we obtain a compact
summary by randomly choosing Õ(kd0.01) samples from the
normalized coefficient vector of this polynomial to obtain a
new sparse polynomial that accurately answers every k-way
marginal query (see e.g. [4]). Our compact summary is this
final sparse polynomial.

5. LOWER BOUNDS
In this section, we address the general problem of approx-

imating a block-composed function G = F (. . . , f(.), . . .),

where F : {−1, 1}k → {−1, 1}, f : Y → {−1, 1}, Y ⊆ Rd/k
over inputs restricted to a set Y ⊆ Y k using low-weight poly-
nomials. We give a lower bound on the minimum degree of
such polynomials. In our main application, G will be ORd,
and Y will be the set of all d-dimensional Boolean vectors
of Hamming weight at most k.

Our proof technique is inspired by the composition the-
orem lower bounds of [30, Theorem 3.1], where it is shown
that the γ-approximate degree of the composed function G
is at least the product of the γ-approximate degree of the
outer function and the PTF degree of the inner function.
Our main contribution is a generalization of such a com-
position theorem along two directions: (1) we show degree
lower bounds that take into account the L1-norm of the coef-
ficient vector of the approximating polynomial, and (2) our
lower bounds hold even when we require the approximation
to be accurate only on inputs of low Hamming weight, while
prior work only considered approximations that are accurate
on all Boolean inputs.

Our main theorem is stated below. In parsing the state-
ment of the theorem, it may be helpful to think of G = ORd,
Y = Hd,k, the set of all d-dimensional Boolean vectors
of Hamming weight at most k, f = ORd/k, F = ORk,

Y = {−1, 1}d/k, and H = Hd/k,1. This will be the setting
of interest in our main application of the theorem.

Theorem 5.1. Let Y ⊂ Rd/k be a finite set and γ >
0. Given f : Y → {−1, 1} and F : {−1, 1}k → {−1, 1}
such that deg2γ(F ) = D, let G : Y k → {−1, 1} denote the
composed function defined by G(Y1, . . . , Yk) = F (f(Y1), . . . ,
f(Yk)). Let Y ⊆ Y k. Suppose there exists H ⊆ Y such that
for every (Y1, . . . , Yk) ∈ Y k \ Y there exists i ∈ [k] such that
Yi ∈ Y \H. Then, for every t ∈ Z+,

deg(γ,W )(G|Y) ≥ 1

2
tD for every W ≤ γ2−kw∗(f |H , t)

D
2 .

We will derive the following corollary from Theorem 5.1.
Theorem 1.4 follows immediately from Corollary 5.2 by con-
sidering any k = o(log d).

Corollary 5.2. Let k ∈ [d]. Then, there exists a uni-
versal constant C > 0 such that

deg(1/6,W )(ORd|Hd,k ) = Ω

(
d√
k
· W

− 1
C
√

k

2
√
k/C

)
for every

W ≤ 1

6.2k

(
d

k

)C√k
.

Intuition underlying our proof technique. Recall that
our upper bound in Section 4 worked as follows. We viewed
ORd as an“OR of ORs”, and we approximated the outer OR
with a polynomial p of degree degouter chosen to be as small
as possible, and composed p with a low-weight but high-
degree polynomial computing each inner OR. We needed to
make sure the weight Winner of the inner polynomials was
very low, because the composition step potentially blows the

weight up to roughly W
degouter
inner . As a result, the inner poly-

nomials had to have very high degree, to keep their weight
low.

Intuitively, we construct a dual solution to a certain lin-
ear program that captures the intuition that any low-weight,
low-degree polynomial approximation to ORd must look
something like our primal solution, composing a low-degree
approximation to an “outer” OR with low-weight approxi-
mations to inner ORs. Moreover, our dual solution formal-
izes the intuition that the composition step must result in a

massive blowup in weight, from Winner to roughly W
degouter
inner .

In more detail, our dual construction works by writing
ORd as an OR of ORs, where the outer OR is over k vari-
ables, and each inner ORs is over d/k variables. We obtain
our dual solution by carefully combining a dual witness Γ
to the high approximate degree of the outer OR, with a
dual witness ψ to the fact that any low-degree polynomial
with margin at least 1 for each inner OR, must have “large”
weight, even if the polynomial must satisfy the margin con-
straint only on inputs of Hamming weight 0 or 1. This latter
condition, that ψ must witness high non-constant margin
weight even if restricted to inputs of Hamming weight 0 or
1, is essential to ensuring that our combined dual witness
does not place any “mass” on irrelevant inputs, i.e. those of
Hamming weight larger than k.
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5.1 Duality Theorems
In the rest of the section, we let χS(x) =

∏
i∈S xi for any

given set S ⊆ [d]. The question of existence of a weight W
polynomial with small degree that γ-approximates a given
function can be expressed as a feasibility problem for a linear
program. Now, in order to show the non-existence of such a
polynomial, it is sufficient to show infeasibility of the linear
program. By duality, this is equivalent to demonstrating the
existence of a solution to the corresponding dual program.
We begin by summarizing the duality theorems that will be
useful in exhibiting this witness.

Theorem 5.3 ((γ,W )-approximate degree). Fix γ
≥ 0 and let f : Y → {−1, 1} be given for some finite set
Y ⊂ Rd. Then, deg(γ,W )(f) ≥ t + 1 if and only if there
exists a function Ψ : Y → R such that

1.
∑
y∈Y |Ψ(y)| = 1,

2.
∑
y∈Y Ψ(y)f(y)−W ·|

∑
y∈Y Ψ(y)χS(y)| > γ for every

S ⊆ [d], |S| ≤ t.

Proof. By definition, deg(γ,W )(f) ≤ t if and only if
∃(λS)S⊆[d],|S|≤t : ∑

S⊆[d],|S|≤t

|λS | ≤W, and

∣∣∣∣∣∣f(y)−
∑

S⊆[d],|S|≤t

λSχS(y)

∣∣∣∣∣∣ ≤ γ ∀ y ∈ Y.
By Farkas’ lemma, deg(γ,W )(f) ≤ t if and only if @ Ψ : Y →
R such that

1

W

∑
y∈Y

(f(y)Ψ(y)− γ|Ψ(y)|) >

∣∣∣∣∣∑
y∈Y

χS(y)Ψ(y)

∣∣∣∣∣
∀ S ⊆ [d], |S| ≤ t.

The dual witness that we construct to prove Theorem 5.1
is obtained by combining a dual witness for the large non-
constant margin weight of the inner function with a dual
witness for the large approximate degree for the outer func-
tion. The duality conditions for these are given below. The
proof of the duality condition for the case of γ-approximate
degree is well-known, so we omit the proof for brevity.

Theorem 5.4 (γ-approximate degree). [5, 31, 37]
Fix γ ≥ 0 and let f : Y → {−1, 1} be given, where Y ⊂ Rd
is a finite set. Then, degγ(f) ≥ t + 1 if and only if there
exists a function Γ : Y → R such that

1.
∑
y∈Y |Γ(y)| = 1,

2.
∑
y∈Y Γ(y)p(y) = 0 for every polynomial p of degree

at most t, and

3.
∑
y∈Y Γ(y)f(y) > γ.

Theorem 5.5 (non-constant margin weight). Let
Y ⊂ Rd be a finite set, let f : Y → {1,−1} be a given func-
tion and w > 0. The non-constant margin weight w∗(f, t) ≥
w if and only if there exists a distribution µ : Y → [0, 1]
such that

1.
∑
y∈Y µ(y)f(y) = 0

2.
∣∣∣∑y∈Y µ(y)f(y)χS(y)

∣∣∣ ≤ 1
w

for every S ⊆ [d], |S| ≤ t.

Proof. Let S = {S ⊆ [d] : |S| ≤ t}, S = S \ {∅}.
By definition, w∗(f, t) is expressed by the following linear
program:

min
∑
S∈S

|λS |

f(y)
∑
S∈S

λSχS(y) ≥ 1 ∀ y ∈ Y.

The above linear program can be restated as follows:

min
∑
S∈S

αS

αS + λS ≥ 0 ∀ S ∈ S,
αS − λS ≥ 0 ∀ S ∈ S,

f(y)
∑
S∈S

λSχS(y) ≥ 1 ∀ y ∈ Y, and

αS ≥ 0 ∀ S ∈ S.

The dual program is expressed below:

max
∑
y

µ(y)

u1(S) + u2(S) ≤ 1 ∀ S ∈ S,∑
y∈Y

µ(y)f(y)χS(y) + u1(S)− u2(S) = 0 ∀ S ∈ S,

∑
y∈Y

µ(y)f(y) = 0,

µ(y) ≥ 0 ∀ y ∈ Y, u1(S), u2(S) ≥ 0 ∀ S ∈ S.

By standard manipulations, the above dual program is
equivalent to

max
∑
y

µ(y)

|
∑
y∈Y

µ(y)χS(y)f(y)| ≤ 1 ∀ S ∈ S

∑
y∈Y

µ(y)f(y) = 0,

µ(y) ≥ 0 ∀ y ∈ Y

Finally, given a distribution µ′ satisfying the hypothesis
of the theorem, one can obtain a dual solution µ to show
that w∗(f, t) ≥ w by taking

w−1 = max
S∈S
|
∑
y∈Y

µ′(y)χS(y)f(y)|

and setting µ(y) = wµ′(y) ∀ y ∈ Y . In the other direction, if
w∗(f, t) ≥ w, then we have a dual solution µ satisfying the
above dual program such that

∑
y∈Y µ(y) = w∗(f, t). By

setting µ′(y) = µ(y)/w∗(f, t) ∀ y ∈ Y , we obtain the desired
distribution.

5.2 Proof of Theorem 5.1
Our approach to exhibiting a dual witness as per Theorem

5.3 is to build a dual witness by appropriately combining
the dual witnesses for the “hardness” of the inner and outer
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functions. Our method of combining the dual witnesses is
inspired by the technique of [30, Theorem 3.7].

Proof of Theorem 5.1. Let w = w∗(f |H , t). We will
exhibit a dual witness function Ψ : Y → R corresponding to
Theorem 5.3 for the specified choice of degree and weight.
For y ∈ Y k, let Yi = (y(i−1)(d/k)+1, . . . , yid/k). By Theorem
5.5, we know that there exists a distribution µ : H → R such
that ∑

y∈H

µ(y)f(y) = 0, (2)∣∣∣∣∣∑
y∈H

µ(y)f(y)χS(y)

∣∣∣∣∣ ≤ 1

w
∀ S ⊆

[
d

k

]
, |S| ≤ t (3)

We set µ(y) = 0 for y ∈ Y \H.
Since deg2γ(F ) = D, by Theorem 5.4, we know that there

exists a function Γ : {−1, 1}k → R such that∑
x∈{−1,1}k

|Γ(x)| = 1, (4)

∑
x∈{−1,1}k

Γ(x)p(x) = 0

for every polynomial p of degree at most D, and (5)∑
x∈{−1,1}k

Γ(x)F (x) > 2γ. (6)

Consider the function Ψ : Y k → R defined as Ψ(y) =

2kΓ(f(Y1), . . . , f(Yk))
∏k
i=1 µ(Yi). By the hypothesis of the

theorem, we know that if (Y1, . . . , Yk) ∈ Y k \ Y, then there
exists i ∈ [k] such that Yi ∈ Y \H and hence µ(Yi) = 0 and
therefore Ψ(Y1, . . . , Yk) = 0.

1. ∑
y∈Y

|Ψ(y)| =
∑
y∈Y

2k|Γ(f(Y1), . . . , f(Yk))|
k∏
i=1

µ(Yi)

= 2kEy∼Φ(|Γ(f(Y1), . . . , f(Yk))|)

where y ∼ Φ denotes y chosen from the product distri-
bution Φ : Y k → [0, 1] defined by Φ(y) =

∏
i∈[k] µ(Yi).

Since
∑
y∈Y µ(y)f(y) = 0, it follows that if Yi is cho-

sen with probability µ(Yi), then f(Yi) is uniformly dis-
tributed in {−1, 1}. Consequently,∑

y∈Y

|Ψ(y)| = 2kEz∼U{−1,1}k (|Γ(z1, . . . , zk)|) = 1.

The last equality is by using (4).

2. By the same reasoning as above, it follows from (6)
that ∑

y∈Y

Ψ(y)G(y) =
∑

z∈{−1,1}k
Γ(z)F (z) > 2γ.

3. Fix a subset S ⊆ [d] of size at most tD/2. Let Si =
S ∩ {(i− 1)(d/k) + 1, . . . , id/k} for each i ∈ [k]. Con-

sequently, χS(y) =
∏k
i=1 χSi(Yi).

Now using the Fourier coefficients Γ̂(T ) of the function
Γ, we can express

Γ(z1, . . . , zk) =
∑
T⊆[k]

Γ̂(T )
∏
i∈T

zi =
∑
T⊆[k],
|T |≥D

Γ̂(T )
∏
i∈T

zi

since Γ̂(T ) = 0 if |T | < D by (5). Hence,

Ψ(y) = 2k
∑
T⊆[k],
|T |≥D

Γ̂(T )
∏
i∈T

f(Yi)µ(Yi) ·
∏

i∈[k]\T

µ(Yi)

Therefore,
∑
y∈Y Ψ(y)χS(y)

=
∑
y∈Y

Ψ(y)
∏
i∈[k]

χSi(Yi)

= 2k
∑
y∈Y

 ∑
T⊆[k],
|T |≥D

Γ̂(T )
∏
i∈T

f(Yi)µ(Yi) ·
∏

i∈[k]\T

µ(Yi)


∏
i∈[k]

χSi(Yi)

= 2k
∑
T⊆[k],
|T |≥D

Γ̂(T )

∑
y∈Y

∏
i∈T

f(Yi)µ(Yi) ·
∏

i∈[k]\T

µ(Yi)
∏
i∈[k]

χSi(Yi)


= 2k

∑
T⊆[k],
|T |≥D

Γ̂(T )

∑
Y1,...,Yk∈H

(∏
i∈T

f(Yi)µ(Yi)χSi(Yi)

·
∏

i∈[k]\T

µ(Yi)χSi(Yi)

 .

Rearranging, we have
∑
y∈Y Ψ(y)χS(y) =

2k
∑
T⊆[k],
|T |≥D

Γ̂(T )
∏
i∈T

∑
Yi∈H

f(Yi)µ(Yi)χSi(Yi)


∏

i∈[k]\T

∑
Yi∈H

µ(Yi)χSi(Yi)

 . (7)

Now, we will bound each product term in the outer
sum by w−D/2. We first observe that for every i ∈ [k],∑

x∈H

µ(x)χSi(x) ≤
∑
x∈H

µ(x) = 1.

If |Si| ≤ t, by (3)∣∣∣∣∣∑
x∈H

f(x)µ(x)χSi(x)

∣∣∣∣∣ ≤ 1

w
.

If |Si| > t, then∣∣∣∣∣∑
x∈H

f(x)µ(x)χSi(x)

∣∣∣∣∣ ≤∑
x∈H

µ(x) = 1.

Since
∑k
i=1 |Si| ≤ tD/2, it follows that |Si| ≤ t for

more than k − D/2 indices i ∈ [k]. Thus, for each
T ⊆ [k] such that |T | ≥ D, there are at least D/2
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indices i ∈ T such that |Si| ≤ t. Hence,∣∣∣∣∣∑
y∈Y

Ψ(y)χS(y)

∣∣∣∣∣ ≤ 2kw−
D
2

∑
T⊆[k]
|T |≥D

∣∣∣Γ̂(T )
∣∣∣ ≤ 2kw−

D
2 .

Here, the last inequality is because |Γ̂(T )| ≤ 2−k from
(4).

From 1, 2 and 3, we have∑
y∈Y

Ψ(y)G(y)−W max
S⊆[d],|S|≤ tD

2

∣∣∣∣∣∑
y∈Y

Ψ(y)χS(y)

∣∣∣∣∣ > γ

if W ≤ γ2−kwD/2.

We now derive Corollary 5.2. We need the following theo-
rems on the approximate degree and the non-constant mar-
gin weight of the ORd function.

Theorem 5.6 (Approximate degree of ORd [27]).

deg1/3(ORd) = Θ(
√
d).

Lemma 5.7 (Margin weight of ORd).

w∗(ORd|Hd,1 , t) ≥ d/t.

Proof. The function

µ(x) =

{
1/2 if x = (1, . . . , 1),

1/2d if x ∈ Hd,1 \ {(1, . . . , 1)}.

acts as the dual witness in Theorem 5.5.

Proof of Corollary 5.2. We use Theorem 5.1 in the
following setting. Let Y = {−1, 1}d/k, the inner function
f : Y → {−1, 1} be ORd/k and the outer function F :

{−1, 1}k → {−1, 1} be ORk, Y = Hd,k and H = Hd/k,1.

By a simple counting argument, if (Y1, . . . , Yk) ∈ {−1, 1}d \
Hd,k, then there exists i ∈ [k] such that Yi ∈ {−1, 1}d/k \
Hd/k,1. Further, by Theorem 5.6, we know that deg1/3(F ) =

Θ(
√
k) and by Claim 5.7, we know that w∗(f |H , t) ≥ d/kt.

Therefore, by Theorem 5.1, we have that, for every t ∈ Z+,

deg1/6,W (ORd|Hd,k ) = Ω
(
t
√
k
)

for every

W ≤ 1

6
2−k

(
d

kt

)C√k
.

We obtain the conclusion by taking

t = b(d/k)(6W2k)−1/C
√
kc.

Since W ≤ (1/6)2−k(d/k)C
√
k, it follows that t ≥ 1 and

hence is a valid choice for t in applying Theorem 5.1.

Comparison to [29]. As described in the beginning of
Section 4, Lemma 8 of the work of Servedio et al. [29] can
be shown to imply that any polynomial p of weight W that
1/3-approximates the ORd function on all Boolean inputs
requires degree Ω(d/ logW ).1 The proof in [29] relies on a

1More precisely, [29, Lemma 8] as stated shows that if the
coefficients of a univariate polynomial P each have absolute

Markov-type inequality that bounds the derivative of a uni-
variate polynomial in terms of its degree and the size of
its coefficients. The proof of this Markov-type inequality is
non-constructive and relies on complex analysis.

Here, we observe that our dual witness construction used
to prove Corollary 5.2 also yields a general lower bound on
the tradeoffs achievable between the weight and degree of
the approximating polynomial p, even when we require p
to be accurate only on inputs of Hamming weight at most
O(logW ) (see Theorem 5.8). The methods of Servedio et
al. do not yield any non-trivial lower bound on the degree
in this setting. We also believe our proof technique is of
interest in comparison to the methods of Servedio et al. as
it is constructive (exhibiting an explicit dual witness for the
lower bound) and avoids the use of complex analysis.

Theorem 5.8. Any polynomial p of weight W that 1/6-
approximates the ORd function on all Boolean inputs re-

quires degree d/2O(
√

logW ).

Proof. As p is accurate on the entire Boolen hypercube,
it is accurate on inputs of Hamming weight at most logW .
The theorem follows by setting k = logW in the statement
of Corollary 5.2.

6. DISCUSSION
We gave a differentially private online algorithm for an-

swering k-way marginal queries that runs in time 2o(d) per
query, and guarantees accurate answers for databases of
size poly(d, k). More precisely, we showed that if there ex-
ists a polynomial of degree t and weight W approximating
the d-variate OR function on Boolean inputs of Hamming
weight at most k, then a variant of the private multiplica-
tive weights algorithm can answer k-way marginal queries in
time roughly

(
d
t

)
per query and guarantee accurate answers

on databases of size roughly W
√
d. To this end, we gave

a new construction showing the existence of polynomial ap-
proximations to the OR function on inputs of low Hamming
weight. Specifically, we showed that polynomials of weight

d0.01 and degree d1−Ω(1/
√
k) exist.

Practical Considerations. Our algorithm for answering
k-way marginals is essentially the same as in [19] except
for using a different set of base functions (specifically, the
set of all low-degree parities), which leads to an efficiency
gain. We note that our algorithm degrades smoothly to
the private multiplicative weights algorithm as the degree of
the promised polynomial approximation increases, and never
gives a worse running time. This behavior suggests that our
algorithm may lead to practical improvements even for rel-
atively small values of d, for which the asymptotic analysis
does not apply. In such cases one might use an alternative

value at most W , and 1/2 ≤ maxx∈[0,1] |P (x)| ≤ R, then
maxx∈[0,1] |P ′(x)| = O(deg(P ) · R · (logW + log deg(P ))),
where P ′(x) denotes the derivative of P at x, and deg(P )
denotes the degree of P . By inspection of the proof, it is
easily seen that if the L1-norm of the coefficients of P is
bounded by W , then the following slightly stronger con-
clusion holds: maxx∈[0,1] |P ′(x)| = O(deg(P ) · R · logW ).
When combined with the symmetrization argument of [29],
this stronger conclusion implies: any polynomial p of weight
W that 1/3-approximates the ORd function on all Boolean
inputs requires degree Ω(d/ logW ).
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but similar analysis that shows the existence of a polynomial
of degree kd1−c/k and weight dc (for any 0 < c < k) that
exactly computes the d-variate OR function on inputs of
Hamming weight at most k. Such a polynomial may be ob-
tained as in our construction, by breaking the d-variate OR
function into an OR of ORs, and using a degree k polyno-
mial defined via polynomial interpolation, instead of Cheby-
shev polynomials, to approximate the outer OR on inputs
of Hamming weight at most k. This variant does achieve
asymptotic properties not shared by the algorithm of The-
orem 1.1, owing to the fact that it uses exact rather than
approximate representations of the database: for any con-

stant k, this variant also runs in time exp
(
d1−Ω(1)

)
, and

achieves worst-case additive error o(1) for sufficiently large

databases, i.e., for n & Õ(dc).

Relationship with [12, 26]. As we mentioned in the in-
troduction, in subsequent work, Dwork et al. [12] show how
to privately release marginals in a very different parameter
regime from what we consider here. Although their algo-
rithm is quite different from ours, there are some important
similarities. Their algorithm is based on a recent algorithm
of Nikolov et. al. [26] for answering arbitrary counting
queries. This algorithm proceeds as follows. First, it adds
noise O(|Q|1/2/|D|) to the answer to every query to obtain
a vector of noisy answers. The noise is sufficient to ensure
differential privacy. Second, it “projects” the vector of noisy
answers onto the convex body K consisting of all vectors of
answers that are consistent with some real database. Sur-
prisingly, the projection step will improve the accuracy. In
fact, Nikolov et al. [26] show that the projected answers will
be accurate even for very small databases. However current
best algorithms for projecting on the body K require time
2O(d) for an arbitrary set of queries.

Dwork et al. [12] show that for the set of k-way marginals
there is a convex body L such that the projection into L
can be computed in time poly(

(
d
≤k

)
) and L approximates K

well enough to achieve accuracy on smaller databases than
would be achievable with independent noise (however, these

databases still have size dΩ(k)). Our approximation of fD by
low-weight polynomials of degree t = o(d) can be shown to

imply a polytope L′ with 2o(d) vertices—which is sufficient
to imply that projection can be computed in time 2o(d)—
that approximates K well enough to achieve accuracy on
databases of nearly optimal size (i.e., size roughly kd0.51).
Thus our approximation-theoretic approach is relevant for
understanding the capabilities and limitations of algorithms
in the Nikolov et al. [26] framework.

Future Directions. Our lower bounds show that our poly-
nomial approximation to the ORd function on inputs of
Hamming weight k is essentially the best possible; in par-
ticular, we cannot hope to substantially improve the run-
ning time on poly(d, k) size databases by giving approxi-
mating polynomials with better weight and degree bounds.
This also rules out several natural candidates that can them-
selves be computed exactly by a low-weight polynomial of
low-degree (e.g., the set of small-width conjunctions).

However, we do not know if it is possible to do better by
using different feature spaces (other than the set of all low-
degree monomials) to approximate all disjunctions over d
variables. There is some additional evidence from prior work

that low-degree monomials may be the optimal choice: if the
parameter of significance is the size of the set of functions
used to approximate disjunctions on inputs of Hamming
weight at most k, then low-degree monomials are indeed
optimal [31] (see also Section 5 in the full version of [34]).
It would be interesting to determine whether this optimal-
ity still holds when we restrict the L1 weight of the linear
combinations used in the approximations to be poly(d).
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