
SIAM J. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. 2132–2155

DETERMINISTIC ALGORITHMS FOR THE LOVÁSZ LOCAL
LEMMA∗

KARTHEKEYAN CHANDRASEKARAN†, NAVIN GOYAL‡ , AND BERNHARD HAEUPLER§

Abstract. The Lovász local lemma (LLL) [P. Erdős and L. Lovász, Problems and results on
3-chromatic hypergraphs and some related questions, in Infinite and Finite Sets, Vol. II, A. Hajnal,
R. Rado, and V. T. Sós, eds., North–Holland, Amsterdam, 1975, pp. 609–627] is a powerful result
in probability theory that informally states the following: the probability that none of a set of bad
events happens is positive if the probability of each event is small compared to the number of events
that depend on it. The LLL is often used for nonconstructive existence proofs of combinatorial
structures. A prominent application is to k-CNF formulas, where the LLL implies that if every
clause in a formula shares variables with at most d ≤ 2k/e − 1 other clauses, then such a formula
has a satisfying assignment. Recently, a randomized algorithm to efficiently construct a satisfying
assignment in this setting was given by Moser [A constructive proof of the Lovász local lemma, in
STOC ’09: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, ACM, New
York, 2009, pp. 343–350]. Subsequently Moser and Tardos [J. ACM, 57 (2010), pp. 11:1–11:15] gave
a general algorithmic framework for the LLL and a randomized algorithm within this framework to
construct the structures guaranteed by the LLL. The main problem left open by Moser and Tardos
was to design an efficient deterministic algorithm for constructing structures guaranteed by the LLL.
In this paper we provide such an algorithm. Our algorithm works in the general framework of
Moser and Tardos with a minimal loss in parameters. For the special case of constructing satisfying
assignments for k-CNF formulas with m clauses, where each clause shares variables with at most
d ≤ 2k/(1+ε)/e − 1 other clauses, for any ε ∈ (0, 1), we give a deterministic algorithm that finds
a satisfying assignment in time Õ(m2(1+1/ε)). This improves upon the deterministic algorithms of

Moser and of Moser and Tardos with running times mΩ(k2) and mΩ(d log d), respectively, which are
superpolynomial for k = ω(1) and d = ω(1), and upon the previous best deterministic algorithm of
Beck, which runs in polynomial time only for d ≤ 2k/16/4. Our algorithm is the first deterministic
algorithm that works in the general framework of Moser and Tardos. We also give a parallel NC
algorithm for the same setting, improving upon an algorithm of Alon [Random Structures Algorithms,
2 (1991), pp. 367–378].

Key words. probabilistic method, derandomization, satisfiability, parallelization

AMS subject classifications. 68Q25, 68R05

DOI. 10.1137/100799642

1. Introduction. The Lovász local lemma (LLL) [7] informally states that the
probability that none of a set of bad events happens is nonzero if the probability
of each event is small compared to the number of events that depend on it (see
section 1.1 for details). It is a powerful result in probability theory and is often used
in conjunction with the probabilistic method to prove the existence of combinatorial
structures. For this, one designs a random process guaranteed to generate the desired
structure if none of a set of bad events happens. If the events satisfy the above-

∗Received by the editors June 21, 2010; accepted for publication (in revised form) July 22, 2013;
published electronically November 21, 2013. A preliminary version of this work appeared in Pro-
ceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Austin, TX,
pp. 992–1004.

http://www.siam.org/journals/sicomp/42-6/79964.html
†College of Computing, Georgia Institute of Technology, Atlanta, GA 30332 (karthe@gatech.edu).

This work was done while the author was visiting Microsoft Research, India.
‡Microsoft Research, Bangalore, Karnataka 560 080, India (navingo@microsoft.com).
§Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cam-

bridge, MA 02139 (haeupler@alum.mit.edu). This work was partially supported by an MIT Presiden-
tial Fellowship from Akamai. This work was done while the author was visiting Microsoft Research,
India.

2132

DETERMINISTIC ALGORITHMS FOR THE LLL 2133

mentioned condition, then the LLL guarantees that the probability that the random
process builds the desired structure is positive, thereby implying its existence. For
many applications of the LLL, it is also important to find the desired structures
efficiently. Unfortunately, the original proof of the LLL [7] does not lead to an efficient
algorithm. In many applications of the LLL, the probability of none of the bad
events happening is negligible. Consequently, the same random process does not
directly provide a randomized algorithm to find the desired structure. Further, in
most applications where the LLL is useful (e.g., [9, 12, 14]), the proof of existence of
the desired structure is known only through the LLL (one exception to this is [9]).
Thus, an efficient algorithm for the LLL would also lead to an efficient algorithm to
find these desired structures. Starting with the work of Beck [3], a number of papers,
e.g., [1, 5, 15, 16, 21], have sought to make the LLL algorithmic. Before discussing
these results in more detail we describe the LLL formally.

1.1. The Lovász local lemma. The LLL gives a lower bound on the probability
of avoiding a possibly large number of “bad” events that are not “too dependent”
on each other. Let A be a finite set of events in a probability space. Let G be
an undirected graph on vertex set A with the property that every event A ∈ A is
mutually independent1 of the set of all events not in its neighborhood. We assume
throughout that G does not contain any self-loops. We denote the set of neighbors of
an event A by Γ(A), i.e., Γ(A) := {B ∈ A | {A,B} ∈ E(G)}. The general version of
the LLL is the following.

Theorem 1 (see [7, 20]). For A and G as defined above, suppose there exists an
assignment of reals x : A → (0, 1) such that for all A ∈ A,

Pr (A) ≤ x(A)
∏

B∈Γ(A)

(1− x(B)).

Then the probability of avoiding all events in A is nonzero. More precisely,

Pr

(⋂
A∈A

A

)
≥
∏
A∈A

(1 − x(A)) > 0.

A simple corollary of the LLL, called symmetric LLL, often suffices in several
applications. In this version there is a uniform upper bound p on the probability of
each event and a uniform upper bound d on the number of neighbors of each event in
the dependency graph. This quantity |Γ(A)| is also called the dependency degree of
the event A.

Corollary 2 (see [7]). If each event A ∈ A occurs with probability at most p
and has dependency degree |Γ(A)| ≤ d such that d ≤ 1/ep − 1, then the probability
that none of the events occur is positive.

Proof. Setting x(A) = 1/(d+ 1) for all events A ∈ A shows that the conditions
of Theorem 1 are satisfied:

Pr (A) ≤ p ≤ 1

e(d+ 1)
≤ 1

d+ 1

(
1− 1

d+ 1

)d

.

The power of the symmetric version is well demonstrated by showing a satisfiabil-
ity result for k-CNF formulas, i.e., Boolean formulas in conjunctive normal form with

1An event A is mutually independent of a set of events {B1, B2, . . .} if Pr (A) =
Pr (A | f(B1, B2, . . .)) for every function f that can be expressed using finitely many unions and
intersections of the arguments.

2134 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

k variables per clause. This classic application of the LLL will help in understanding
our and previous results and techniques and therefore will be a running example in
the rest of the paper.

Corollary 3. Every k-CNF formula in which every clause shares variables with
at most 2k/e− 1 other clauses is satisfiable.

Proof. To apply the symmetric LLL (i.e., Corollary 2) we choose the probability
space to be the product space of each variable being chosen true or false independently
with probability 1/2. For each clause C we define an event AC that is said to occur if
and only if clause C is not satisfied. Clearly, two events AC and AC′ are independent
unless the clauses C and C′ share variables. Now take G to be the graph on the
events with edges between events AC and AC′ if and only if C and C′ share variables.
It is clear that each event AC is mutually independent of its nonneighbors in G.
By assumption each event has at most d ≤ (2k/e) − 1 neighbors. Moreover, the
probability p that a clause is not satisfied by a random assignment is exactly 2−k.
The requirement ep(d + 1) ≤ 1 of Corollary 2 is therefore met, and hence we obtain
that the probability that none of the events occur is positive. The satisfiability of the
k-CNF formula follows.

1.2. Previous work. Algorithms for the LLL are often targeted toward one
of two model problems: k-CNF formula satisfiability and k-uniform hypergraph 2-
coloring. Interesting in their own right, these problems capture the essence of the
LLL without many technicalities. Moreover, algorithms for these problems usually
lead to algorithms for more general applications of the LLL [5, 6, 14]. As shown in
section 1.1, for the k-CNF formula satisfiability problem, the LLL implies that every
k-CNF formula in which each clause shares variables with at most 2k/e − 1 other
clauses has a satisfying assignment. Similarly, it can be shown that the vertices of
a k-uniform hypergraph, in which each edge shares variables with at most 2k/e − 1
other edges, can be colored using two colors so that no edge is monochromatic. The
algorithmic objective is to efficiently find such a 2-coloring (or a satisfying assignment
in the case of k-CNF).

This question was first addressed by Beck in his seminal paper [3], where he gave
an algorithm for the hypergraph 2-coloring problem with dependency degree O(2k/48).
More precisely, he gave a polynomial-time deterministic algorithm to find a 2-coloring
of the vertices of every k-uniform hypergraph in which each edge shares vertices with
O(2k/48) other edges such that no edge is monochromatic. Molloy and Reed [14]
showed that the dependency degree of this algorithm can be improved to 2k/16/4. In
the same volume in which Beck’s paper appeared, Alon [1] gave a randomized paral-
lel version of Beck’s algorithm that outputs a valid 2-coloring when the dependency
degree is at most 2k/500 and showed that this algorithm can be derandomized.2 Since
then, tremendous progress has been made on randomized LLL algorithms. Nonethe-
less, prior to our work, Beck’s and Alon’s algorithms remained the best deterministic
and parallel algorithms for the (symmetric) LLL.

For randomized algorithms and algorithms that require k to be a fixed constant,
a long line of work improved the maximum achievable dependency degree and the
generality of the results, culminating in the work of Moser and Tardos [18], who
provided a simple randomized (parallel) algorithm for the general LLL. These results
are summarized in Table 1, and we discuss them next.

2Alon did not attempt to optimize the exponent, but Srinivasan [21] states that optimizing the
bound would still lead to an exponent with several tens in the denominator.

DETERMINISTIC ALGORITHMS FOR THE LLL 2135

Table 1

Maximum dependency degrees achieved for k-CNF formulas by previous randomized, determin-
istic and parallel algorithms.

Max. Dep. Deg. d Det. Par. Remark

Beck [3] O(2k/48) X

Molloy and Reed [14] O(2k/16) X prev. best det. algorithm

Alon [1] O(2k/500) X X prev. best det. par. algorithm

O(2k/8) X X efficient only for constant k,d

Srinivasan [21] O(2k/4)

O(2k/10.3) X

Moser [16] O(2k/2)

O(2k/2) X efficient only for constant k,d

Moser [17] O(2k)

O(2k) X efficient only for constant k,d

Moser and Tardos [18] (2k/e− 1)

(1− ε) · (2k/e− 1) X

(1− ε) · (2k/e− 1) X X efficient only for constant k,d

Our work (2k/(1+ε)/e− 1) X X

Alon [1] gave an algorithm that is efficient for a dependency degree of O(2k/8)
if one assumes that k, and therefore also the dependency degree, is bounded above
by a fixed constant. Molloy and Reed [15] generalized Alon’s method to give ef-
ficient algorithms for a certain set-system model for applications of the symmetric
form of the LLL. Czumaj and Scheideler [5, 6] consider the algorithmic problem for
the asymmetric version of the LLL. The asymmetric version of the LLL addresses the
possibility of 2-coloring the vertices of nonuniform hypergraphs with no monochro-
matic edges. The next improvement in increasing the dependency degree threshold
was due to Srinivasan [21]. He gave a randomized algorithm for hypergraph 2-coloring
when the dependency degree is at most 2k/4. Moser [16] improved the dependency de-
gree threshold to O(2k/2) using a variant of Srinivasan’s algorithm. Later, Moser [17]
achieved a significant breakthrough, improving the dependency degree threshold to
2k−5 using a much simpler randomized algorithm. Moser and Tardos [18] closed the
small constant-factor gap to the optimal dependency degree 2k/e guaranteed by the
general LLL.

More importantly, Moser and Tardos [18] gave an algorithmic framework for the
general version of the LLL (discussed in section 2.1) that minimally restricts the
abstract LLL setting to make it amenable to algorithmic considerations. In this
framework they gave an efficient randomized algorithm for computing the structures
implied by the LLL. The importance of the framework stems from the fact that it
captures most of the LLL applications, thus directly providing algorithms for these
applications. Moser [16, 17] and Moser and Tardos [18] also gave a derandomization
of their algorithms, obtaining an algorithm that runs in mO((1/ε)d log d) time, where d
is the maximum dependency degree and m is the number of events. For the simpler
k-CNF problem, the running time of the deterministic algorithms can be improved to
mO(k2). Nonetheless, this running time is polynomial only under the strong condition
that k and the dependency degree are bounded by a fixed constant.

The main question that remained open was how to obtain deterministic algorithms
that go beyond the initial results of Beck [3] and that are efficient for unbounded
dependency degrees. We address this question by giving new derandomizations of the
Moser–Tardos algorithm. We give a derandomization that works efficiently for the

2136 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

general version of the LLL in the aforementioned algorithmic framework of Moser and
Tardos [18], assuming a mild ε-slack in the LLL conditions. As a corollary, we obtain
an algorithm that runs in time Õ(m2(1+(1/ε))) to find a satisfying assignment for a
k-CNF formula with m clauses such that no clause shares variables with more than
2k/(1+ε)/e other clauses for any ε > 0. We note that our ε-slack assumption is in the
exponent as opposed to the multiplicative slackness in the Moser and Tardos results
(see Table 1). We also extend the randomized parallel algorithm of Moser and Tardos
to obtain an efficient deterministic parallel algorithm under the same assumption,
thereby improving over Alon’s algorithm with a dependency degree of O(2k/500).

Organization. In section 2, we describe the algorithmic framework of Moser and
Tardos for the LLL and their algorithm. In section 3, we state our results and their
implications for the k-CNF problem. In section 4, we give an informal description of
the new ideas in the paper. In section 5, we formally define the major ingredient in our
derandomization: the partial witness structure. In section 6, we give our sequential
deterministic algorithm and analyze its running time. Finally, in section 7, we present
our parallel algorithm and its running time analysis.

2. Preliminaries.

2.1. Algorithmic framework. To get an algorithmic handle on the LLL, we
move away from the abstract probabilistic setting of the original LLL. We impose
some restrictions on the representation and form of the probability space under con-
sideration. In this paper we follow the algorithmic framework for the LLL due to
Moser and Tardos [18]. We describe the framework in this section.

The probability space is given by a finite collection of mutually independent dis-
crete random variables P = {P1, . . . , Pn}. Let Di be the domain of Pi, which is
assumed to be finite. Every event in a finite collection of events A = {A1, . . . , Am}
is determined by a subset of P . We define the variable set of an event A ∈ A as the
unique minimal subset S ⊆ P that determines A and denote it by vbl(A).

The dependency graph G = GA of the collection of events A is a graph on vertex
set A. The graph GA has an edge between events A,B ∈ A, A �= B if vbl(A) ∩
vbl(B) �= ∅. For A ∈ A we denote the neighborhood of A in G by Γ(A) = ΓA(A)
and define Γ+(A) = Γ(A) ∪ {A}. Note that events that do not share variables are
independent.

It is useful to think of A as a family of “bad” events. The objective is to find a
point in the probability space or, equivalently, an evaluation of the random variables
from their respective domains, for which none of the bad events happens. We call
such an evaluation a good evaluation.

Moser and Tardos [18] gave a constructive proof of the general version of the LLL
in this framework (Theorem 4) using Algorithm 1, presented in the next section. This
framework captures most known applications of the LLL.

2.2. The Moser–Tardos algorithm. Moser and Tardos [18] presented the very
simple Algorithm 1 to find a good evaluation.

Observe that if the algorithm terminates, then it outputs a good evaluation. The
following theorem from [18] shows that the algorithm is efficient if the LLL conditions
are met.

Theorem 4 (see [18]). Let A be a collection of events as defined in the algorithmic
framework defined in section 2.1. If there exists an assignment of reals x : A → (0, 1)

DETERMINISTIC ALGORITHMS FOR THE LLL 2137

Algorithm 1 (sequential Moser–Tardos algorithm).
1. For every P ∈ P , vP ← a random evaluation of P .
2. While ∃A ∈ A such that A happens on the current evaluation (P = vP :
∀P ∈ P), do
(a) Pick one such A that happens (any arbitrary choice would work).
(b) Resample A: For all P ∈ vbl(A), do

• vP ← a new random evaluation of P .
3. Return (vP)P∈P .

such that for all A ∈ A,

Pr (A) ≤ x′(A) := x(A)
∏

B∈Γ(A)

(1− x(B)),

then the expected number of resamplings done by Algorithm 1 is at most
∑

A∈A(x(A)/
(1− x(A))).

3. Results. This section formally states the new results established in this pa-
per.

If an assignment of reals as stated in Theorem 4 exists, then we use such an
assignment to define the following parameters:3

• x′(A) := x(A)
∏

B∈Γ(A)(1− x(B)).

• D := maxPi∈P{|Di|}.
• M := max{n, 4m, 2

∑
A∈A

2|vbl(A)|
x′(A) · x(A)

1−x(A) , maxA∈A 1
x′(A)}.

• wmin := minA∈A{− logx′(A)}.
• γ = logM

ε .
For the rest of this paper, we will use these parameters to express the running

time of our algorithms.
Our sequential deterministic algorithm assumes that for every event A ∈ A, the

conditional probability of occurrence of A under any partial assignment to the vari-
ables in vbl(A) can be computed efficiently. This is the same complexity assumption
as used in Moser and Tardos [18]. It can be further weakened to use pessimistic
estimators.

Theorem 5. Let the time needed to compute the conditional probability Pr[A |
for all i ∈ I : Pi = vi] for any A ∈ A and any partial evaluation (vi ∈ Di)i∈I , I ⊆ [n]
be at most tC . Suppose there is an ε ∈ (0, 1) and an assignment of reals x : A → (0, 1)
such that for all A ∈ A,

Pr (A) ≤ x′(A)1+ε =

⎛
⎝x(A)

∏
B∈Γ(A)

(1− x(B))

⎞
⎠

1+ε

.

Then there is a deterministic algorithm that finds a good evaluation in time

O

(
tC · DM3+2/ε log2 M

ε2w2
min

)
,

where the parameters D, M , and wmin are as defined above.

3Throughout this paper log denotes the logarithm to base 2.

2138 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

We make a few remarks to give a perspective on the magnitudes of the parameters
involved in our running time bound. As a guideline to reading the results, it is
convenient to think of M as Õ(m+ n) and of wmin as Ω(1).

Indeed, wmin = Ω(1) holds whenever the x(A)’s are bounded away from one by
a constant. For this setting we also have, without loss of generality,4 that x(A) =
Ω(m−1). Lastly, the factor (

∏
B∈Γ(A)(1− x(B)))−1 is usually small; e.g., in all appli-

cations using the symmetric LLL or the simple asymmetric version [14, 15] this factor
is a constant. This makes M at most a polynomial in m and n. For most applications
of the LLL this also makes M polynomial in the size of the input/output. For all
these settings our algorithms are efficient: the running time bound of our sequential
algorithm is polynomial in M and that of our parallel algorithm is polylogarithmic in
M using at most MO(1) many processors.

Notable exceptions in which M is not polynomial in the input size are the prob-
lems in [10]. For these problems M is still Õ(m + n) but the number of events m is
exponential in the number of variables n and the input/output size. For these set-
tings, the problem of checking whether a given evaluation is good is coNP-complete,
and obtaining a derandomized algorithm is an open question.

It is illuminating to look at the special case of k-CNF both in the statements of our
theorems and in the proofs, as many of the technicalities disappear while retaining the
essential ideas. For this reason, we state our results also for k-CNF. The magnitudes
of the above parameters in the k-CNF applications are given by x′(A) > 1/de, D = 2,
M = Õ(m), and wmin ≈ k.

Corollary 6. For any ε ∈ (0, 1) there is a deterministic algorithm that finds
a satisfying assignment to any k-CNF formula with m clauses in which each clause
shares variables with at most 2k/(1+ε)/e− 1 other clauses in time Õ(m3+2/ε).

We also give a parallel deterministic algorithm. This algorithm makes a different
complexity assumption about the events, namely, that their decision tree complexity is
small. This assumption is quite general and includes almost all applications of the LLL
(except, again, for the problems mentioned in [10]). They are an interesting alternative
to the assumption that conditional probabilities can be computed efficiently as used
in the sequential algorithm.

Theorem 7. For a given evaluation, let the time taken by MO(1) processors to
check the truth of an event A ∈ A be at most teval. Let tMIS be the time to compute
the maximal independent set in an m-vertex graph using MO(1) parallel processors
on an EREW PRAM (Exclusive Read Exclusive Write PRAM). Suppose there is an
ε ∈ (0, 1) and an assignment of reals x : A → (0, 1) such that for all A ∈ A,

Pr (A) ≤ x′(A)1+ε =

⎛
⎝x(A)

∏
B∈Γ(A)

(1− x(B))

⎞
⎠

1+ε

.

If there exists a constant c such that every event A ∈ A has decision tree complexity5

4With x(A) being bounded away from one and given the ε-slack assumed in our theorems, one
can always reduce ε slightly to obtain a small constant-factor gap between x′(A) and Pr (A) (similar
to [18]) and then increase any extremely small x(A) to at least c/m for some small constant c > 0.
Increasing x(A) in this way only weakens the LLL condition for the event A itself. Furthermore, the
effect on the LLL condition for any event due to the changed (1−x(B)) factors of one of its (at most
m) neighboring events B accumulates to at most (1 − c/m)m, which can be made larger than the
produced gap between x′(A) and Pr (A).

5Informally, we say that a function f(x1, . . . , xn) has decision tree complexity at most k if we
can determine its value by adaptively querying at most k of the n input variables.

DETERMINISTIC ALGORITHMS FOR THE LLL 2139

at most cmin{− logx′(A), logM}, then there is a parallel algorithm that finds a good
evaluation in time

O

(
logM

εwmin
(tMIS + teval) + γ logD

)

using MO((c/ε) logD) processors.
The fastest known algorithm for computing the maximal independent set in an

m-vertex graph using MO(1) parallel processors on an EREW PRAM runs in time
tMIS = O(log2 m) [2, 13]. Using this in the theorem, we get the following corollary
for k-CNF.

Corollary 8. For any ε ∈ (0, 1) there is a deterministic parallel algorithm that
uses mO(1/ε) processors on an EREW PRAM and finds a satisfying assignment to
any k-CNF formula with m clauses in which each clause shares variables with at most
2k/(1+ε)/e other clauses in time O(log3 m/ε).

4. Techniques. In this section, we informally describe the main ideas of our
approach in the special context of k-CNF formulas and indicate how they generalize.
Reading this section is not essential but provides intuition behind the techniques used
for developing deterministic algorithms for the general LLL. For the sake of exposi-
tion in this section, we omit numerical constants in some mathematical expressions.
Familiarity with the Moser–Tardos paper [18] is useful but not necessary for this
section.

4.1. The Moser–Tardos derandomization. Let F be a k-CNF formula with
m clauses. We note immediately that if k > 1 + logm, then the probability that a
random assignment does not satisfy a clause is 2−k ≤ 1/(2m). Thus the probability
that on a random assignment F has an unsatisfied clause is at most 1/2, and hence a
satisfying assignment can be found in polynomial time using the method of conditional
probabilities (see, e.g., [14]). Henceforth, we assume that k ≤ 1 + logm. We also
assume that each clause in F shares variables with at most 2k/e − 1 other clauses;
thus the LLL guarantees the existence of a satisfying assignment.

To explain our techniques we first need to outline the deterministic algorithms of
Moser and Moser and Tardos which work in polynomial time, albeit only for k = O(1).
Consider a table T of values: for each variable in P the table has a sequence of values,
each picked at random according to its distribution. We can run Algorithm 1 using
such a table: instead of randomly sampling afresh each time a new evaluation for a
variable is needed, we pick its next unused value from T . The fact that the randomized
algorithm terminates quickly in expectation (Theorem 4) implies that there exist small
tables (i.e., small lists for each variable) on which the algorithm terminates with a
satisfying assignment. The deterministic algorithm finds one such table.

The constraints to be satisfied by such a table can be described in terms of witness
trees : for a run of the randomized algorithm, whenever an event is resampled, a
witness tree “records” the sequence of resamplings that led to the current resampling.
We will not define witness trees formally here; see [18] or section 5 for a formal
definition. We say that a witness (we will often just use “witness” instead of “witness
tree”) is consistent with a table if this witness arises when the table is used to run
Algorithm 1. If the algorithm using a table T does not terminate after a small number
of resamplings, then it has a large consistent witness certifying this fact. Thus if we
use a table which has no large consistent witness, the algorithm should terminate
quickly.

2140 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

The deterministic algorithms of Moser and Moser and Tardos compute a list L of
witness trees satisfying the following properties:

1. Consider an arbitrary but fixed table T . If no witness in L is consistent with
T , then there is no large witness tree consistent with T .

2. The expected number of witnesses in L consistent with a random table is less
than 1. This property is needed in order to apply the method of conditional
probabilities to find a small table with which no tree in L is consistent.

3. The list L is of polynomial size. This property is necessary for the method of
conditional probabilities to be efficient.

We now describe how these properties arise naturally while using Algorithm 1 and
how to find the list L. In the context of k-CNF formulas with m clauses satisfying
the degree bound, Moser (and also Moser and Tardos when their general algorithm
is interpreted for k-CNF) prove two lemmas that they use for derandomization. The
expectation lemma states that the expected number of large (size at least logm)
consistent witness trees (among all possible witness trees) is less than 1/2 (here ran-
domness is over the choice of the table). At this point we could try to use the method
of conditional probabilities to find a table such that there are no large witness trees
consistent with it. However, there are infinitely many witness trees, and so it is not
clear how to proceed by this method.

This difficulty is resolved by the range lemma which states that if, for some u, no
witness tree with size in the range [u, ku] is consistent with a table, then no witness
tree of size at least u is consistent with the table. Thus, the list L is the set of witness
trees of size in the range [u, ku]. Now one can find the required table by using the
method of conditional probabilities to exclude all tables with a consistent witness in
L. The number of witnesses in L is mΩ(k2). To proceed by the method of conditional
probabilities we need to explicitly maintain L and find values for the entries in the
table so that none of the witnesses in L remains consistent with it.

Thus, the algorithm of Moser (and respectively Moser and Tardos) works in poly-
nomial time only for constant k. Clearly, it is the size of L that is the bottleneck
toward achieving polynomial running time for k = ω(1). One possible way to deal
with the large size of L would be to maintain L in an implicit manner, thereby using
a small amount of space. We do not know how to achieve this. We solve this problem
in a different way by working with a new (though closely related) notion of witness
trees, which we explain next.

4.2. Partial witness trees. For a run of the Moser–Tardos randomized al-
gorithm using a table T , for each resampling of an event, we get one witness tree
consistent with T . Given a consistent witness tree of size ku + 1, removing the root
gives rise to up to k new consistent witnesses, whose union is the original witness
minus the root. Clearly one of these new subtrees has size at least u. This proves
their range lemma. The range lemma is optimal for the witness trees. That is, for
a given u it is not possible to reduce the multiplicative factor of k between the two
endpoints of the range [u, ku].

We overcome this limitation by introducing partial witness trees, which have prop-
erties similar to those of witness trees but have the additional advantage of allowing
a tighter range lemma. The only difference between witness trees and partial witness
trees is that the root, instead of being labeled by a clause C (as is the case for witness
trees), is labeled by a subset of variables from C. Now, instead of removing the root
to construct new witness trees as in the proof of the Moser–Tardos range lemma,
each subset of the set labeling the root gives a new consistent partial witness tree.

DETERMINISTIC ALGORITHMS FOR THE LLL 2141

This flexibility allows us to prove the range lemma for the smaller range [u, 2u]. The
number of partial witness trees is larger than the number of witness trees because
there are 2km choices for the label of the root (as opposed to m choices in the case
of witness trees) since the root may be labeled by any subset of variables in a clause.
But 2k ≤ 2m, as explained at the beginning of section 4.1. Thus for each witness tree
there are at most 2k ≤ 2m partial witnesses, and the expectation lemma holds with
similar parameters for partial witnesses as well. The method of conditional proba-
bilities now needs to handle partial witness trees of size in the range [logm, 2 logm],
which is the new L. The number of partial witnesses in this range is mΩ(k), which is
still too large. The next ingredient reduces this number to a manageable size.

4.3. ε-slack. By introducing an ε-slack, that is, by making the slightly stronger
assumption that each clause intersects at most 2(1−ε)k/e other clauses, we can prove
a stronger expectation lemma: the expected number of partial witnesses of size more
than (4 logm)/εk is less than 1/2. Indeed, the number of labeled trees of size u
and degree at most d is less than (ed)u ≤ 2(1−ε)ku (see [11]). Thus the number of
partial witnesses of size u is less than 2km2(1−ε)ku, where the factor 2km (≤ 2m2)
accounts for the number of possible labels for the root. Moreover, the probability that
a given partial witness tree of size u is consistent with a random table is 2−k(u−1) (as
opposed to 2−ku in the case of a witness tree). This is proved in a manner similar to
that for witness trees. Thus the expected number of partial witnesses of size at least
γ = 4 logm/εk consistent with a random table is at most∑

u≥γ

2km2(1−ε)ku · 2−k(u−1) ≤
∑
u≥γ

22km2−εku ≤
∑
u≥γ

4m32−εku ≤ 1/2.

Now, by the new expectation and range lemmas it is sufficient to consider par-
tial witnesses of size in the range [(4 logm)/εk, (8 logm)/εk]. The number of partial
witnesses of size in this range is polynomial in m; thus the list L of trees that the
method of conditional probabilities needs to maintain is polynomial in size.

4.4. General version. More effort is needed to obtain a deterministic algorithm
for the general version of the LLL. Here, the events are allowed to have significantly
varying probabilities of occurrence and unrestricted structure.

One issue is that an event could possibly depend on all n variables. In that case,
taking all variable subsets of a label for the root of a partial witness would give up
to 2n different possible labels for the roots. However, for the range lemma to hold
true, we do not need to consider all possible variable subsets for the root; instead, for
each root event A it is sufficient to have a preselected choice of 2vbl(A) labels. This
preselected choice of labels BA is fixed for each event A in the beginning.

The major difficulty in derandomizing the general LLL is in finding a list L sat-
isfying the three properties mentioned earlier for applying the method of conditional
probabilities. The range lemma can still be applied. However, the existence of low
probability events with (potentially) many neighbors may lead to as many as O(mu)
partial witnesses of size in the range [u, 2u]. Indeed, it can be shown that there are
instances in which there is no setting of u such that the list L containing all witnesses
of size in the range [u, 2u] satisfies properties 2 and 3 mentioned in section 4.1.

The most important ingredient for working around this in the general setting is
the notion of weight of a witness tree. The weight of a tree is the sum of the weights
of individual vertices; more weight is given to those vertices whose corresponding
bad events have smaller probability of occurrence. Our deterministic algorithm for

2142 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

the general version finds a list L that consists of partial witnesses with weight (as
opposed to size) in the range [γ, 2γ], where γ is a number depending on the problem.
It is easy to prove a similar range lemma for weight-based partial witnesses which
guarantees property 1 for this list. Further, the value of γ can be chosen so that
the expectation lemma of Moser and Tardos can be adjusted to lead to property
2 for L. Unfortunately one cannot prove property 3 by counting the number of
partial witnesses using combinatorial enumeration methods as in [17]. This is due to
the possibility of up to O(m) neighbors for each event A in the dependency graph.
However, the strong coupling between weight and probability of occurrence of bad
events can be used to obtain property 3 directly from the expectation lemma.

4.5. Parallel algorithm. For the parallel algorithm, we use the technique of
limited-independence spaces or, more specifically, k-wise δ-dependent probability
spaces due to Naor and Naor [19] and its extensions [4, 8]. This is a well-known
technique for derandomization. The basic idea here is that instead of using per-
fectly random bits in the randomized algorithm, we use random bits chosen from a
limited-independence probability space. For many algorithms it turns out that their
performance does not degrade when using bits from such a probability space; but now
the advantage is that these probability spaces are much smaller in size, and so one can
enumerate all the sample points in them and choose a good one, thereby obtaining
a deterministic algorithm. This tool was applied by Alon [1] to give a deterministic
parallel algorithm for k-uniform hypergraph 2-coloring and other applications of the
LLL, but with much worse parameters than ours. Our application of this tool is quite
different from the way Alon uses it: Alon starts with a random 2-coloring of the hy-
pergraph chosen from a small size limited-independence space; he then shows that at
least one of the sample points in this space has the property that the monochromatic
hyperedges and almost monochromatic hyperedges form small connected components.
For such a coloring, one can alter it locally over vertices in each component to get a
valid 2-coloring.

In contrast, our algorithm is very simple (we describe it for k-CNF; the arguments
are very similar for hypergraph 2-coloring and for the general LLL): recall that for
a random table, the expected number of consistent partial witnesses with size in the
range [(4 logm)/εk, (8 logm)/εk] is at most 1/2 (for the case of k-CNF). Each of these
partial witnesses uses at most ((8 logm)/εk) ·k = ((8 logm)/ε) entries from the table.
Now, instead of using a completely random table, we use a table chosen according to
an (8 logm/ε)-wise independent distribution (i.e., any subset of at most (8 logm)/ε
entries has the same joint distribution as in a random table). So any partial witness
tree is consistent with the new random table with the same probability as before, and
hence the expected number of partial witnesses consistent with the new random table
is still at most 1/2. But now the key point to note is that the number of tables in the
new limited-independence distribution is much smaller and we can try each of them
in parallel until we succeed with one of the tables. To make the probability space
even smaller we use k-wise δ-dependent distributions, but the idea remains the same.
Finally, to determine whether a table has no consistent partial witness whose size is
at least (4 logm)/εk, we run the parallel algorithm of Moser and Tardos on the table.

In order to apply the above strategy to the general version, we require that the
number of variables on which witnesses depend be small, and hence the number
of variables on which events depend should also be small. In our general parallel
algorithm we relax this to some extent: instead of requiring that each event depend
on few variables, we only require that the decision tree complexity of the event be
small. The idea behind the proof remains the same.

DETERMINISTIC ALGORITHMS FOR THE LLL 2143

5. The partial witness structure. In this section we define the partial witness
structures and their weight. We then prove the new range lemma using these weights.

5.1. Definitions. For every A ∈ A we fix an arbitrary rooted binary variable
splitting BA. It is a binary tree in which all vertices have labels which are nonempty
subsets of vbl(A): the root of BA is labeled by vbl(A) itself, the leaves are labeled
by distinct singleton subsets of vbl(A), and every nonleaf vertex in BA is labeled by
the disjoint union of the labels of its two children. This means that every nonroot
nonleaf vertex is labeled by a set {vi1 , . . . , vik}, k ≥ 2, while its children are labeled
by {vi1 , . . . , vij} and {vij+1 , . . . , vik} for some 1 ≤ j ≤ k − 1. Note that BA consists
of 2|vbl(A)| − 1 vertices. We abuse the notation BA to also denote the set of labels of
the vertices of this binary variable splitting. The binary variable splitting is not to be
confused with the (partial) witness tree, which we define next. The elements from BA

will be used solely to define the possible labels for the roots of partial witness trees.
An example of a binary variable splitting BA can be found in Figure 1.

Fig. 1. A binary variable splitting for an event A that depends on variables x1, x2, x3, x4, x5, x6.

A partial witness tree τS is a finite rooted tree whose vertices apart from the root
are labeled by events from A, while the root is labeled by some subset S of variables
with S ∈ BR for some R ∈ A. Each child of the root must be labeled by an event
A that depends on at least one variable in S (thus a neighbor of the corresponding
root event); the children of every other vertex that is labeled by an event B must
be labeled either by B or by a neighboring event of B, i.e., its label should be from
Γ+(B). Define V (τS) to be the set of vertices of τS . For notational convenience, we
use V (τS) := V (τS) \ {Root(τS)} and denote the label of a vertex v ∈ V (τS) by [v].

A full witness tree is a special case of a partial witness where the root is the
complete set vbl(A) for some A ∈ A. In such a case, we relabel the root with A
instead of vbl(A). Note that this definition of a full witness tree is the same as that
of the witness trees in [18].

Define the weight of an event A ∈ A to be w(A) = − log x′(A). Define the weight
of a partial witness tree τS as the sum of the weights of the labels of the vertices in

2144 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

V (τS), i.e.,

w(τS) :=
∑

v∈V (τS)

w([v]) = − log

⎛
⎝ ∏

v∈V (τS)

x′([v])

⎞
⎠.

The depth of a vertex v in a witness tree is the distance of v from the root in
the witness tree. We say that a partial witness tree is proper if for every vertex v, all
children of v have distinct labels.

Similarly to [16], we will control the randomness used by the algorithm using a
table of evaluations, denoted by T . It is convenient to think of T as a matrix. This
table contains one row for each variable in P . Each row contains evaluations for its
variable. Note that the number of columns in the table could possibly be infinite. In
order to use such a table in the algorithm, we maintain a pointer ti for each variable
Pi ∈ P indicating the column containing its current value used in the evaluation of
the events. We denote the value of Pi at ti by T (i, ti). If we want to resample an
evaluation for Pi, we increment the pointer ti by one and use the value at the new
location.

We call a table T a random table if, for all variables Pi ∈ P and all positions j,
the entry T (i, j) is picked independently at random according to the distribution of
Pi. It is clear that running Algorithm 1 is equivalent to using a random table to run
Algorithm 2 below.

Algorithm 2 (Moser–Tardos algorithm with input table).
Input: Table T with values for variables
Output: An assignment of values for variables so that none of the events in A happens

1. For every variable Pi ∈ P : Initialize the pointer ti = 1.
2. While ∃A ∈ A that happens on the current assignment (i.e., for all Pi ∈ P :

Pi = T (i, ti)) do
(a) Pick one such A.
(b) Resample A: For all Pi ∈ vbl(A) increment ti by one.

3. Return for all Pi ∈ P : Pi = T (i, ti).

In the above algorithm, step 2(a) is performed by a fixed arbitrary deterministic
procedure. This makes the algorithm well defined.

Let C : N→ A be an ordering of the events (with repetitions), which we call the
event-log. Let the ordering of the events as they have been selected for resampling in
the execution of Algorithm 2 using a table T be denoted by an event-log CT . Observe
that CT is partial if the algorithm terminates after a finite number of resamplings t;
i.e., CT (i) is defined only for i ∈ {1, 2, . . . , t}.

Given an event-log C, associate with each resampling step t and each S ∈ BC(t) a

partial witness tree τC(t, S) as follows. Define τ
(t)
C (t, S) to be an isolated root vertex

labeled S. Going backward through the event-log, for each i = t− 1, t− 2, . . . , 1: (i) if

there is a nonroot vertex v ∈ τ
(i+1)
C (t, S) such that C(i) ∈ Γ+([v]), then from among

all such vertices choose the one whose distance from the root is maximum (break ties
arbitrarily) and attach a new child vertex u to v with label C(i), thereby obtaining

the tree τ
(i)
C (t, S); (ii) else if S∩vbl(C(i)) is nonempty, then attach a new child vertex

to the root with label C(i) to obtain τ
(i)
C (t, S); (iii) else, set τ

(i)
C (t, S) = τ

(i+1)
C (t, S).

Finally, set τC(t, S) = τ
(1)
C (t, S).

DETERMINISTIC ALGORITHMS FOR THE LLL 2145

Dependency graph Partial witness tree τC(9, {x1, x5})
Fig. 2. The dependency graph and an example of a partial witness tree constructed from

the event-log C = A2, A3, A5, A4, A1, A3, A1, A5, A2, . . ., where vbl(A1) = {x1, x2, x3}, vbl(A2) =
{x1, x4, x5}, vbl(A3) = {x4, x5, x6}, vbl(A4) = {x3, x7}, vbl(A5) = {x4, x6}. Note that the last
occurrence of the event A5 is not added to the witness since it does not share a variable with the
variable subset {x1, x5} ⊂ vbl(A2) that was selected as a root.

Note that if S = vbl(A) ∈ BA, then τC(t, S) is a full witness tree with root A. For
such a full witness tree, our construction is the same as the construction of witness
trees associated with the log in [18].

We say that the partial witness tree τS occurs in event-log C if there exists t ∈ N

such that for some A ∈ A such that S ∈ BA, C(t) = A and τS = τC(t, S). An example
illustrating these definitions can be found in Figure 2.

For a table T , a T -check on a partial witness tree τS uses table T as follows. In
decreasing order of depth, visit the nonroot vertices of τS , and for a vertex with label
A, take the first unused value from T for each x ∈ vbl(A) and check whether the
resulting evaluation makes A happen. The T -check passes if all events corresponding
to vertices apart from the root happen when checked. We say that a partial witness
tree is consistent with a table T if the T -check passes on the partial witness tree.

Most of the above definitions are simple extensions of the ones given in [18].

5.2. Properties. In this section we state and prove two important properties of
the partial witness tree which will be useful in obtaining the deterministic sequential
and parallel algorithms.

The following lemma proves that, given a witness tree, one can use the T -check
procedure to exactly determine which values were used in the resamplings that lead
to this witness tree.

Lemma 9. For a fixed table T , if a partial witness tree τS occurs in the event-log
CT , then

1. τS is proper.
2. τS is consistent with T .

Proof. The proof of this lemma is essentially Lemma 2.1 in [18] and is included
here for completeness.

Since τS occurs in CT , there exists some time instant t such that for S ∈ BCT (t),

2146 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

τS = τCT (t, S). For each v ∈ V (τS), let d(v) denote the depth of vertex v and let

q(v) denote the largest value q with v contained in τ
(q)
CT

(t). We observe that q(v) is
the time instant in which v was attached to τCT (t, S) by the procedure constructing
τCT (t, S).

If q(u) < q(v) for vertices u, v ∈ V (τS), and vbl([u]) and vbl([v]) are not disjoint,

then d(u) > d(v). Indeed, when adding the vertex u to τ
(q(u)+1)
CT

(t) we attach it
to v or to another vertex of equal or greater depth. Therefore, for any two vertices
u, v ∈ V (τS) at the same depth d(u) = d(v), [u] and [v] do not depend on any common
variables; that is, the labels in every level of τS form an independent set in G. In
particular τS must be proper.

Now consider a nonroot vertex v in the partial witness tree τS . Let Pi ∈ vbl([v]).
Let D(i) be the set of vertices w ∈ τS with depth greater than that of v such that [w]
depends on variable Pi.

When the T -check considers the vertex v and uses the next unused evaluation
of the variable Pi, it uses the evaluation T (i, |D(i)|). This is because the witness
check visits the vertices in order of decreasing depth, and among the vertices with
depth equal to that of v, only [v] depends on Pi (as we proved earlier that vertices
with equal depth are variable disjoint). So the T -check must have used values for Pi

exactly when it was considering the vertices in D(i).
At the time instant of resampling [v], say tv, Algorithm 2 chooses [v] to be re-

sampled, which implies that [v] happens before this resampling. For Pi ∈ vbl([v]),
the value of the variable Pi at tv is T (i, |D(i)|). This is because the pointer for Pi

was increased for events [w] that were resampled before the current instance, where
w ∈ D(i). Note that every event which was resampled before tv and that depends on
[v] would be present at depth greater than that of v in τS by construction. Hence,
D(i) is the complete set of events which led to resampling of Pi before the instant tv.

As the T -check uses the same values for the variables in vbl([v]) when considering
v as the values that led to resampling of [v], it must also find that [v] happens.

Next, we prove a range lemma for partial witnesses, improving the range to a
factor of two.

Lemma 10. If a partial witness tree of weight at least γ occurs in the event-log
CT and every vertex v in the tree has weight at most γ, then a partial witness tree of
weight ∈ [γ, 2γ) occurs in the event-log CT .

Proof. The proof is by contradiction. Consider a least weight partial witness tree
whose weight is at least γ that occurs in the event-log CT , namely, τS = τCT (t, S) for
some t, S ∈ BA where A = CT (t). A witness tree with weight at least γ exists by
assumption, and because there are only finitely many choices for t and S, there exists
such a tree with least weight. Suppose, for the sake of contradiction, that w(τS) ≥ 2γ.
We may assume that Root(τS) has at least one child; otherwise, the weight of the tree
is zero. We have two cases.

Case (i): Root(τS) has only one child v. Let t′ be the largest time instant before t
at which [v] was resampled. Note that this resampling of [v] corresponds to the child
v of the root of τS . Now, consider the partial witness tree τ ′S = τCT (t

′, S′ = vbl([v])).
Since τ ′S contains one less vertex than τS , w(τ

′
S) < w(τS). Also, since the weight

of any vertex v in the tree is at most γ, we get that w(τ ′S) = w(τS) − w([v]) ≥ γ.
Finally, by definition of τ ′S , it is clear that τ

′
S occurs in the event-log CT . Thus, τ

′
S is

a counterexample of smaller weight, contradicting our choice of τS .

Case (ii): Root(τS) has at least two children. Since the labeling clauses of these
children have pairwise disjoint sets of variables and they have to share a variable

DETERMINISTIC ALGORITHMS FOR THE LLL 2147

with S, we have that S consists of at least two variables. Thus, it also has at least
two children in the variable splitting BA. In BA, starting from S, we now explore
the descendants of S in the following way, looking for the first vertex whose children
SL and SR reduce the weight of the tree, i.e., 0 < w(τSL), w(τSR) < w(τS), where
τSL = τCT (t, SL) and τSR = τCT (t, SR): if a vertex SL reduces the weight of the tree
without making it zero (i.e., 0 < w(τSL) < w(τS)), then its variable disjoint sibling
SR must also reduce the weight of the tree; on the other hand, if a vertex SL reduces
the weight of the tree to zero, then its sibling SR cannot reduce the weight of the tree.
Suppose SL reduces the weight to zero; then we explore SR to check if its children
reduce the weight. It is easy to see that this exploration process stops at the latest
when SL and SR are leaves in BA.

By definition, both τSL and τSR occur in the event-log CT . Since we pick the first
siblings SL and SR (in the breadth first search) which reduce the weight, their parent
S′ is such that w(τS′) ≥ w(τS), where τS′ = τCT (t, S

′). We are considering only those
S′ such that S′ ⊆ S. This implies that w(τS′) ≤ w(τS). Hence, w(τS′) = w(τS), and
for every vertex that has label A in τS , one can find a unique vertex labeled by A in
τS′ and vice versa. Further, S′ is the disjoint union of SL and SR; therefore, for each
vertex with label A in τS′ , one can find a unique vertex labeled by A in either τSL or
τSR .

As a consequence, we have that for every vertex with label A in τS , one can find a
unique vertex labeled by A in either τSL or τSR . Hence, w(τSL)+w(τSR) ≥ w(τS), and
therefore max{w(τSL), w(τSR)} ≥ w(τS)/2 ≥ γ. So, the witness with larger weight
among τSL and τSR has weight at least γ but less than that of τS . This contradicts
our choice of τS .

6. Deterministic algorithm. In this section we describe our sequential deter-
ministic algorithm and prove Theorem 5.

For the rest of the paper we define a set of forbidden witnesses F which contains
all partial witness trees with weight between γ and 2γ. We define a table to be a good
table if no forbidden witness is consistent with it. With these definitions we can state
our deterministic algorithm.

Algorithm 3 (sequential deterministic algorithm).
1. Enumerate all forbidden witnesses in F .
2. Construct a good table T via the method of conditional probabilities:

For each variable p ∈ P , and for each j, 0 ≤ j ≤ 2γ/wmin, do
• Select a value for T (p, j) that minimizes the expected number of forbid-
den witnesses that are consistent with T when all entries in the table
chosen so far are fixed and the yet to be chosen values are random.

3. Run Algorithm 2 using table T as input.

We next give a short overview of the running time analysis of Algorithm 3 before
embarking on the proof of Theorem 5.

The running time of Algorithm 3 depends on the time to construct a good table
T by the method of conditional probabilities. To construct such a table efficiently,
we prove that the number of forbidden witnesses is small (polynomial in M) using
Lemma 12. Further, we need to show that the method of conditional probabilities
indeed constructs a good table. We show this by proving in Lemma 11 that the
expected number of forbidden witnesses that are consistent with T initially (when all
values are random) is smaller than one. This invariant is maintained by the method

2148 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

of conditional probabilities resulting in a fixed table with less than one (and therefore
no) forbidden witnesses consistent with it. By Lemmas 9 and 10, it follows that no
witness of weight more than γ occurs when Algorithm 2 is run on the table T . Finally,
the maximum number of vertices in a partial witness tree of weight at most γ is small.
This suffices to show that the size of table T is small, and thus Algorithm 3 is efficient.

Lemma 11. The expected number of forbidden witnesses consistent with a random
table T is less than 1/2.

Proof. For each event A ∈ A, let ΥA and Υ′
A be the set of partial and, respectively,

full witness trees in F with root from BA. With this notation the expectation in
question is exactly ∑

A∈A

∑
τ∈ΥA

Pr (τ is consistent with T) .

Note that according to Lemma 9, a partial witness tree is consistent with a table T
if and only if it passes the T -check. Clearly, the probability that a witness τ passes
the T -check for the random table T is

∏
v∈V (τ) Pr ([v]) (recall that V (τ) denotes the

set of nonroot vertices in τ). Using this and the assumption in Theorem 5 that
Pr ([v]) ≤ x′([v])1+ε we get that the expectation is at most

E :=
∑
A∈A

∑
τ∈ΥA

∏
v∈V (τ)

x′([v])1+ε.

To relate this to the full witness trees considered in [18], we associate with every
partial witness tree τ (in ΥA) a full witness tree τ ′ (in Υ′

A) by replacing the root
subset S ∈ BA with the full set vbl(A). Note that the weights of τ and τ ′ are the
same (as is the quantity

∏
v∈V (τ) x

′([v])1+ε). Note also that every full witness tree

has at most |BA| partial witness trees associated with it. Hence, we can rewrite the
expression to get

E ≤
∑
A∈A
|BA|

∑
τ∈Υ′

A

∏
v∈V (τ)

x′([v])1+ε

≤
∑
A∈A
|BA|

∑
τ∈Υ′

A

⎛
⎝ ∏

v∈V (τ)

x′([v])

⎞
⎠ 2−γε,

where the last expression follows because, for τ ∈ Υ′
A, we have

w(τ) = − log
∏

v∈V (τ)

x′([v]) ≥ γ

=⇒
∏

v∈V (τ)

x′([v]) ≤ 2−γ .

Next we transition from partial to full witness trees by including the root again
(and going from V to V):

E ≤
∑
A∈A

|BA|
x′(A)

⎛
⎝ ∑

τ∈Υ′
A

∏
v∈V (τ)

x′([v])

⎞
⎠ 2−γε.

DETERMINISTIC ALGORITHMS FOR THE LLL 2149

Now we can use the following result of Moser and Tardos (section 3 in [18]) that
bounds the expected number of full witnesses with root A:

∑
τ∈Υ′

A

∏
v∈V (τ)

x′([v]) ≤ x(A)

1− x(A)
.

Their proof makes use of a Galton–Watson process that randomly generates
proper witness trees with root A (note that by Lemma 9 all partial witness trees
are proper). Using this,

E ≤
∑
A∈A

|BA|
x′(A)

·
(

x(A)

1− x(A)

)
2−γε

<
M

2
2−γε ≤ 1

2
.

Here the penultimate inequality follows from the fact that |BA| < 2|vbl(A)|
and the definition of M , and the last inequality follows from the choice of γ =
(logM)/ε.

Owing to the definition of forbidden witnesses via weights, there is an easy way
to count the number of forbidden witnesses using the fact that their expected number
is small.

Lemma 12. The number of witnesses with weight at most 2γ is at most O
(M2(1+1/ε)). In particular, the number of forbidden witnesses is less than M2(1+1/ε).

Proof. Each forbidden witness τ ∈ F has weight w(τ) ≤ 2γ, and thus

|F |(2−2γ)(1+ε) ≤
∑
τ∈F

(2−w(τ))(1+ε)

=
∑
τ∈F

⎛
⎝ ∏

v∈V (τ)

x′([v])

⎞
⎠

(1+ε)

= E ≤ M

2
2−γε ≤ 1

2
.

Here, the final line of inequalities comes from the proof of Lemma 11. Therefore the
number of forbidden witnesses is at most

|F | ≤
(
M

2
2−γε

)
· 22γ(1+ε) =

(
M

2

)
2γ(2+ε) ≤ 1

2
M2(1+1/ε).

Using the same argument with any γ′ instead of γ shows that the number of
witnesses with weight in [γ′, 2γ′] is at most (M/2) · 2γ′(2+ε). Since this is exponential
in γ′ the total number of witnesses with weight at most 2γ is dominated by a geometric
sum which is O(M2(1+1/ε)).

We are now ready to prove Theorem 5.
Proof of Theorem 5. We first describe how the set of forbidden witnesses in the

first step of the deterministic algorithm (Algorithm 3) is obtained.
Enumeration of witnesses. We enumerate all witnesses of weight at most 2γ and

then discard the ones with weight less than γ. According to Lemma 12, there are at
most M2(1+1/ε) witnesses of weight at most 2γ and each of them consists of at most
xmax = (2γ/wmin) + 1 = (2 logM)/(εwmin) + 1 vertices. In our discussion so far we

2150 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

did not need to consider the order of children of a node in our witness trees. However,
for the enumeration it will be useful to order the children of each node from left to
right. We will build witnesses by attaching nodes level-by-level and from left to right.
We fix an order on the events according to their weights, breaking ties arbitrarily,
and use the convention that all witnesses are represented so that for any node its
children from left to right have increasing weight. We then say a node v is eligible
to be attached to a witness τ if in the resulting witness τ ′ the node v is the deepest
rightmost leaf in τ ′. With this convention the enumeration proceeds as follows.

As a preprocessing step for every event A we sort all the events in Γ+(A) according
to their weight in O(m2 logm) time. Then, starting with W1, the set of all possible
roots, we incrementally compute all witnesses Wx having x = 1, . . . , xmax nodes and
weight at most 2γ. To obtain Wx+1 from Wx we take each witness τ ∈ Wx and each
node v ∈ τ and check for all A ∈ Γ+([v]) with weight more than the current children
of v, in the order of increasing weight, whether a node v′ with [v′] = A is eligible to
be attached to τ at v. If it is eligible, and the resulting new witness τ ′ has weight
at most 2γ, then we add τ ′ to Wx+1. It is clear that in this way we enumerate all
forbidden witnesses without producing any witness more than once.

We now analyze the time required by the above enumeration procedure. We write
down each witness explicitly, taking O(xmax logM) time and space per witness. For
each witness it takes linear (in the number of nodes) time to find the nodes with eligible
children. Note that attaching children to a node in the order of increasing weight
guarantees that at most one attachment attempt per node fails due to large weight.
Thus, the total time to list all forbidden witnesses is at most O(xmaxM

2(1+1/ε) logM).
Finding a good table. The running time to find a good table T using the method

of conditional probabilities as described in Algorithm 3 can be bounded as follows:
for each of the n variables, the table T has 2γ/wmin = xmax entries to be filled in. For
each of those entries at most D possible values need to be tested. For each value we
compute the conditional expectation of the number of forbidden witnesses that are
consistent with the partially filled in table T by computing the conditional probability
of each forbidden witness τ ∈ F to pass the T -check given the filled in values and
summing up these probabilities. This can be done by plugging the fixed values into
each of the at most xmax nodes of τ , similarly to the T -check procedure, computing
the conditional probability in tC time and computing the product of these conditional
probabilities. Thus, the total time to compute T is at most

O(n · xmax ·D · |F | · xmax · tC) = O

(
DM3+2/ε log2 M

ε2w2
min

tC

)
.

To complete the proof we show that the running time of the sequential algo-
rithm on a table T obtained by step 2 of the deterministic algorithm is at most
O
(
m2 · xmax · tC

)
.

First, we note that by running the sequential algorithm using table T , none of
the forbidden witnesses can occur in the event-log CT . This is because the table is
obtained by the method of conditional probabilities: in the beginning of the construc-
tion of the table, when no value is fixed, the expected number of forbidden witnesses
that occur in the event-log is less than 1/2, as proved in Lemma 11. This invariant is
maintained while picking values for variables in the table. Thus, once all values are
fixed, the number of witness trees in F that occur in the event-log CT is still less than
1/2 and hence zero.

This implies that the sequential algorithm with T as input resamples each event

DETERMINISTIC ALGORITHMS FOR THE LLL 2151

A ∈ A at most xmax times. Indeed, if some event A ∈ A is resampled more than xmax

times, then A occurs in the event-log CT at least xmax times. Now, the weight of the
partial witness tree associated with the last instance at which A was resampled would
be at least xmaxwmin, which is more than 2γ. According to Lemma 10, which is appli-
cable since γ = (logM)/ε is larger than the maximum weight event, there would also
be a forbidden witness of weight between γ and 2γ occurring in CT , a contradiction.
Therefore, the number of resamplings done by Algorithm 2 is O (m · xmax) and the
total running time for Algorithm 2 using table T is O

(
m2 · xmax · tC

)
: the additional

factor m · tC comes from the time needed to find an event that happens. This running
time is smaller than the upper bound for the time needed to find a good table T .

This shows that Algorithm 3 terminates in the stated time bound. Lastly, the cor-
rectness of the algorithm follows directly from the fact that the algorithm terminates
only if a good assignment is found.

From the general deterministic algorithm it is easy to obtain the corollary regard-
ing k-CNF by using the standard reduction to the symmetric LLL and plugging in
the optimal values for the parameters.

Proof of Corollary 6. For a k-CNF formula with clauses A = {A1, . . . , Am}, for
each clause A ∈ A we define an event A and say that the event happens if the clause
is unsatisfied. Further, each variable appearing in the formula picks values uniformly
at random from {0, 1}. Then, for every event A, Pr (A) = 2−k. As remarked in
section 4.1, we may assume that k < logm; otherwise, the problem becomes simple.
If d is the maximum number of clauses with which a clause shares its variables,
setting x(A) = 1/d for all A ∈ A, we obtain that x′(A) > 1/de. The condition
that d ≤ 2k/(1+ε)/e then implies for all events A that Pr (A) ≤ x′(A)1+ε, as required
by the LLL condition. Therefore, we use parameters tC = O(k), wmin ≈ k, D = 2,
|vbl(A)| = k and obtainM = O(n+m+mk+d) = O(m logm). With these parameters
the corollary follows directly from Theorem 5.

7. Parallel algorithm. In this section we present an efficient parallel algorithm
(outlined in section 4.5) and analyze its performance, thereby proving Theorem 7.

In the design of our sequential algorithm, we used Algorithm 2 as a subroutine,
which takes an input table and uses it to search for an assignment for which none
of the bad events happens. This reduced the problem to finding a good input table.
For designing the parallel algorithm, Moser and Tardos already provided the paral-
lel counterpart of Algorithm 2, and thus what remains is to find a good table. Our
algorithm relies on the following observation: instead of sampling the values in the
table independently at random, if we choose it from a distribution that is a (k, δ)-
approximation of the original distribution (for appropriate k and δ), the algorithm
behaves as if the values in the table had been chosen independently at random (Propo-
sition 1). The support of a (k, δ)-approximation can be chosen to be small and can
be generated fast in parallel, so this gives us a small set of tables which is guaranteed
to contain at least one table on which the algorithm terminates quickly (Lemma 13).
Our algorithm runs the Moser–Tardos parallel algorithm on each of these tables in
parallel and stops as soon as one of the tables leads to a good evaluation.

We begin by describing the two ingredients that we will need.

7.1. Limited-independence probability spaces. We need the notion of (k, δ)-
approximate distributions to describe our algorithm.

Definition 1 ((k, δ)-approximations [8]). Let S be a product probability distri-
bution on a finite domain S1 × S2 × · · · × Ss given by mutually independent random
variables X1, . . . , Xs, where Xi ∈ Si. For positive integer k and constant δ ∈ (0, 1), a

2152 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

probability distribution Y on S1×S2×· · ·×Ss is said to be a (k, δ)-approximation of S if
the following holds: for every I ⊆ [s] such that |I| ≤ k, and every v ∈ S1×S2×· · ·×Ss,
we have

|Pr
S
[vI]− Pr

Y
[vI]| ≤ δ,

where PrS [vI] denotes the probability that for a random vector (x1, . . . , xs) chosen
according to the probability distribution S, we get xi = vi for i ∈ I; the definition of
PrY [vI] is analogous.

The support Y of a (k, δ)-approximation Y of S can be constructed efficiently
in parallel. We use the construction described in [8] (which in turn uses [19]). This
construction builds a (k, δ)-approximation to a product space with t variables with a
support size of |Y | = poly(2k, log t, δ−1). The construction can be parallelized to run
in time O(log t + log k + log 1/δ + logD) using poly(2k/δ)tD processors, where D is
again the maximum domain size for a variable.

For our algorithm we want approximately random tables of small size. More
formally we will work with tables containing at most �γ/wmin� columns. So, we
set t = n · �γ/wmin� and S1 × S2 × · · · × Ss = (D1 × D2 × · · · × Dn)

�γ/wmin�.
We furthermore set k = 2cγ, δ−1 = 3M2+2/εD2cγ , and S to be the distribution
obtained by independently sampling each entry in the table according to its dis-
tribution. For these values and recalling that γ = (logM)/ε, the support Y of
the (k, δ)-approximation Y obtained by the construction mentioned above has size
poly(22cγ , log (n · γ/wmin), 3M

2+2/εD2cγ) = MO((c/ε) logD), and it can be constructed
in parallel in time O(γ logD + log(1/wmin)) using MO((c/ε) logD) processors.

7.2. Decision trees. In Theorem 7, our assumption about how the events de-
pend on the variables was in terms of decision tree complexity. In this section we
recall the definition of decision trees and show some simple properties needed in what
follows.

Let S = D1 × · · · ×Dn, and let f : S → {0, 1} be a Boolean function. We denote
the elements of S by (x1, x2, . . . , xn), where xi ∈ Di for 1 ≤ i ≤ n. A decision tree
for computing f(x1, x2, . . . , xn) is a rooted tree T , where each internal vertex of the
tree is labeled by one of the variables from {x1, . . . , xn}, and each leaf is labeled by
0 or 1. An internal vertex labeled by xi, has |Di| children, with their corresponding
edges being labeled by distinct elements from Di. To compute f(x1, x2, . . . , xn), the
execution of T determines a root-to-leaf path as follows: starting at the root we query
the value of the variable labeling a vertex and follow the edge to the child which is
labeled by the answer to the query. When we reach the leaf, we output the label of
the leaf. The complexity of a decision tree is its depth. The decision tree complexity
of a function f is the depth of the shallowest decision tree computing f .

Proposition 1. Let S = D1 × · · · ×Dn be a product space of finite domains of
size at most D = maxi |Di|, let P be an independent product distribution on S, and
let f, f1, f2 : S → {0, 1} be Boolean functions on S.

1. If f1 and f2 have decision tree complexity k1 and k2, respectively, then the
decision tree complexity of f1 ∧ f2 is at most k1 + k2.

2. If f has decision tree complexity at most k, then every (k, δ)-approximation
Y of P is Dkδ-indistinguishable from P, i.e.,

|EY(f)− EP (f)| ≤ Dkδ.

Proof. For the first claim we recall that a function f having decision tree com-
plexity at most k is equivalent to saying that we can determine f(x) for x ∈ S by

DETERMINISTIC ALGORITHMS FOR THE LLL 2153

adaptively querying at most k coordinates of x. If this is true for f1 and f2 with
decision tree complexity k1 and k2, respectively, then we can evaluate f1(x) ∧ f2(x)
by adaptively querying at most k1 + k2 components of x. Therefore the conjunction
has decision tree complexity at most k1 + k2.

For the second claim, we fix a decision tree for f with depth at most k. Each one
of the leaf-to-root paths in this tree corresponds to a partial assignment of values to at
most k components, and this assignment determines the value of f . The expectation of
f under any distribution is simply the sum of the probabilities of the paths, resulting
in a 1-evaluation at the leaf. Switching from a completely independent distribution to
a k-wise independent distribution does not change these probabilities, since the partial
assignments involve at most k variables. Similarly switching to a (k, δ)-approximation
changes each of these probabilities by at most δ. There are at most Dk paths resulting
in a 1-evaluation, which implies that the deviation of the expectation is at most
Dkδ.

The following lemma shows that using a (k, δ)-approximate distribution instead
of the original one does not change the performance of Algorithm 2 if the events have
low decision tree complexity.

Lemma 13. Suppose that there exists a constant c such that every event A ∈ A
has decision tree complexity at most cmin{− logx′(A), logM}. Let k = 2cγ and
δ−1 = 3M2+2/εD2cγ. The expected number of forbidden witnesses consistent with a
table T that was created by a (k, δ)-approximation for the distribution of random tables
is at most 1/2 + 1/3 < 1.

Proof. The event that a partial witness τ ∈ F is consistent with T is exactly the
conjunction of events [v], v ∈ V (τ). Using Proposition 1, the decision tree complexity
of this event is at most∑

v∈V (τ)

cmin{logM,− log x′([v])} ≤ c
∑

v∈V (τ)

− logx′([v]) ≤ 2cγ,

where the last inequality follows because, by definition, forbidden witnesses have
weight at most 2γ. Lemma 11 shows that, using the original independent distribution
P , the expected number of forbidden witnesses occurring is at most 1/2. The second
claim of Proposition 1 proves that switching to a (k, δ)-approximation changes this
expectation by at most Dkδ = 1/(3M2+2/ε) for each of the |F | witnesses. To complete
the proof, observe that by Lemma 12 we have |F | ≤M2+2/ε.

7.3. The parallel algorithm and its analysis. We can now describe our
parallel algorithm.

Proof of Theorem 7. We use Algorithm 4 to obtain a good evaluation. We already
saw in section 7.1 that the support Y of the (k, δ)-approximation to the random
distribution of tables in step 1 can be generated efficiently within the time and the
number of processors claimed. We now show that these resources also suffice for the
rest of the steps in the algorithm.

Lemma 13 guarantees that there is a table T ∈ Y for which there is no forbidden
witness consistent with it. Steps 2 and 3 are the same as the parallel algorithm
in [18]. We will show that on table T this algorithm terminates within at most
�γ/wmin� steps: by using Lemma 4.1 of [18], if the algorithm runs for i iterations,
then there exists a consistent witness of height i. Such a witness has weight at least
iwmin. We know from Lemmas 10 and 9 that no witness of weight more than γ can
occur, since otherwise a forbidden witness would be consistent with T . Hence we have
i ≤ γ/wmin. This means that the thread for table T does not attempt to increment

2154 K. CHANDRASEKARAN, N. GOYAL, AND B. HAEUPLER

Algorithm 4 (parallel deterministic algorithm).
1. Construct a small set of tables Y which form the support of a (k, δ)-

approximate independent distribution Y using the construction mentioned
in section 7.1.

2. For each table T ∈ Y do in parallel:
(a) For every variable Pi ∈ P : initialize the pointer ti = 1.
(b) While ∃A ∈ A that happens when for all Pi ∈ P : Pi = T (i, ti), do

• Compute, in parallel, a maximal independent set I in the subgraph
of GA induced by the events that happen on the current assignment.
• Resample all A ∈ I in parallel: For all Pi ∈

⋃
A∈I vbl(A), increment

ti by one.
• If ti = �γ/wmin� + 1 (one more than the total number of samples
for Pi in a good table), then halt this thread of computation.

3. Once a valid assignment is found using one of the tables, output it and ter-
minate.

the pointer ti beyond γ/wi on table T , and so this thread terminates with a good
evaluation. Each of these i iterations takes time teval to evaluate all m events and
time tMIS to compute the independent set on the induced dependency subgraph of
size at most m. This proves that after creating the probability space Y, the algorithm
terminates in O((tMIS + teval)γ/wmin) time and the termination criterion guarantees
correctness. Adding this to O(γ logD + log(1/wmin)), the time to construct Y , we
get that the total time the algorithm takes is O((tMIS + teval)γ/wmin+γ logD). The
number of processors needed for the loop is bounded by MO(1) for each of the |Y |
parallel computations and thus MO((c/ε) logD) in total.

Again it is easy to obtain the k-CNF result as a corollary of the general algorithm.
Proof of Corollary 8. We apply the LLL in the same way to k-CNF as in the

proof of Corollary 6. Again we assume without loss of generality that k = O(log n)
and again get M = O(mk) and wmin ≈ k. Since each clause depends only on k
variables, a decision tree complexity of O(k) is obvious. Finally, using Theorem 7
and an algorithm of Alon, Babai, and Itai [2] or Luby [13] to compute the maximal
independent set in time tMIS = O(log2 m) leads to the claimed running time.

8. Conclusion. Moser and Tardos [18] raised the open question for a deter-
ministic LLL algorithm. We address this question and give a deterministic parallel
algorithm that works under nearly the same conditions as its randomized versions.

All known deterministic or (randomized) parallel algorithms need a slack in the
LLL conditions (see Table 1). It remains open to remove those ε-slacks. Obtain-
ing deterministic constructions for the problems in [10] is another interesting open
question.

Acknowledgments. We thank the anonymous reviewers who caught an error
in an earlier version and whose comments greatly improved the presentation of this
paper. We also thank Aravind Srinivasan for inspiration and Salil Vadhan and David
Karger for many helpful comments.

REFERENCES

[1] N. Alon, A parallel algorithmic version of the local lemma, Random Structures Algorithms, 2
(1991), pp. 367–378.

DETERMINISTIC ALGORITHMS FOR THE LLL 2155

[2] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567–583.

[3] J. Beck, An algorithmic approach to the Lovász local lemma, Random Structures Algorithms,
2 (1991), pp. 343–366.

[4] S. Chari, P. Rohatgi, and A. Srinivasan, Improved algorithms via approximations of prob-
ability distributions, J. Comput. System Sci., 61 (2000), pp. 81–107.

[5] A. Czumaj and C. Scheideler, A new algorithm approach to the general Lovász local lemma
with applications to scheduling and satisfiability problems (extended abstract), in STOC ’00:
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, ACM, New
York, 2000, pp. 38–47.

[6] A. Czumaj and C. Scheideler, Coloring nonuniform hypergraphs: A new algorithmic ap-
proach to the general Lovász local lemma, Random Structures Algorithms, 17 (2000),
pp. 213–237.

[7] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and Finite Sets, Vol. II, A. Hajnal, R. Rado, and V. T. Sós, eds.,
North–Holland, Amsterdam, 1975, pp. 609–627.

[8] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic, Efficient approximation
of product distributions, Random Structures Algorithms, 13 (1998), pp. 1–16.

[9] U. Feige, On allocations that maximize fairness, in SODA ’08: Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia,
2008, pp. 287–293.

[10] B. Haeupler, B. Saha, and A. Srinivasan, New constructive aspects of the Lovász local
lemma, J. ACM, 58 (2011), 28.

[11] D. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, Addison-
Wesley, Reading, MA, 1969.

[12] F. T. Leighton, B. M. Maggs, and S. Rao, Packet routing and job-shop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–186.

[13] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J.
Comput., 15 (1986), pp. 1036–1053.

[14] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method, Springer, New York,
2000.

[15] M. Molloy and B. A. Reed, Further algorithmic aspects of the local lemma, in STOC ’98:
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1998, pp. 524–529.

[16] R. A. Moser, Derandomizing the Lovász Local Lemma More Effectively, preprint,
arXiv.0807.2120, 2008.

[17] R. A. Moser, A constructive proof of the Lovász local lemma, in STOC ’09: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, ACM, New York, 2009,
pp. 343–350.

[18] R. A. Moser and G. Tardos, A constructive proof of the general Lovász local lemma, J. ACM,
57 (2010), pp. 11:1–11:15.

[19] J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and applications,
SIAM J. Comput., 22 (1993), pp. 838–856.

[20] J. Spencer, Ramsey’s theorem—a new lower bound, J. Combin. Theory Ser. A, 18 (1975),
pp. 108–115.

[21] A. Srinivasan, Improved algorithmic versions of the Lovász local lemma, in SODA ’08: Pro-
ceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, SIAM, Philadelphia, 2008, pp. 611–620.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

