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Abstract. Efficient sampling, integration and optimization algorithms
for logconcave functions [BV04,KV06,LV06a] rely on the good isoperime-
try of these functions. We extend this to show that −1/(n− 1)-concave
functions have good isoperimetry, and moreover, using a characterization
of functions based on their values along every line, we prove that this
is the largest class of functions with good isoperimetry in the spectrum
from concave to quasi-concave. We give an efficient sampling algorithm
based on a random walk for −1/(n − 1)-concave probability densities
satisfying a smoothness criterion, which includes heavy-tailed densities
such as the Cauchy density. In addition, the mixing time of this random
walk for Cauchy density matches the corresponding best known bounds
for logconcave densities.

1 Introduction

Given a function f : Rn → R+, accessible by querying the function value at any
point x ∈ Rn, and an error parameter ε > 0, three fundamental problems are: (i)
Integration: estimate

∫
f to within 1± ε, (ii) Maximization: find x that approx-

imately maximizes f , i.e., f(x) ≥ (1 − ε) max f , and (iii) Sampling: generate x
from density π with dtv(π, πf ) ≤ ε where dtv is the total variation distance and
πf is the density proportional to f . The complexity of an algorithm is measured
by the number of queries for the function values.

The most general class of functions for which these problems are known to
have compexity polynomial in the dimension, is the class of logconcave functions.
A function f : Rn → R+ is logconcave if its logarithm is concave on its support,
i.e., for any two points x, y ∈ Rn and any λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ. (1)

Logconcave functions generalize indicator functions of convex bodies (and hence
the problems subsume convex optimization and volume computation) as well
as Gaussians. Following the polynomial time algorithm of Dyer, Frieze and
Kannan [DFK91] for estimating the volume of a convex body, a long line of
work [AK91,Lov90,DF91,LS92,LS93,KLS97,LV07,LV06c,LV06b] culminated in
the results that both sampling and integration have polynomial complexity for



any logconcave density. Integration is done by a reduction to sampling and
sampling also provides an alternative to the Ellipsoid method for optimization
[BV04,KV06,LV06a]. Sampling itself is achieved by a random walk whose sta-
tionary distribution has density proportional to the given function. The key
question is thus the rate of convergence of the walk, which depends (among
other things) on the isoperimetry of the target function.

Informally, a function has good isoperimetry if one cannot remove a set of
small measure from its domain and partition it into two disjoint sets of large
measure. Logconcave functions satisfy the following isoperimetric inequality:

Theorem 1. [DF91,LS93] Let f : Rn → R+ be a logconcave function with a
convex support K of diameter D,

∫
Rn f <∞, and S1, S2, S3 be any partition of K

into three measurable sets. Then, for a distribution πf with density proportional
to f ,

πf (S3) ≥ 2d(S1, S2)
D

min{πf (S1), πf (S2)},

where d(S1, S2) refers to the minimum distance between any two points in S1

and S2.

Although the class of logconcave functions is fairly large, it does not capture
all the functions with good isoperimetry. The definition of logconcavity says
that, for every line segment in the domain, the value at its midpoint is at least
the geometric mean of the values at its endpoints. This is a generalization of
concavity where, for every line segment in the domain, the value at its midpoint
is at least the arithmetic mean of the values at its endpoints. This motivates
the following question: What condition should a function satisfy along every line
segment to have good isoperimetry?

In this paper, using a characterization of functions based on generalized
means, we present a class of functions with good isoperimetry that is the largest
under this particular characterization. We also give an efficient algorithm to
sample from these functions; a well-known example among these is the Cauchy
density (which is not logconcave and is heavy-tailed).

To motivate and state our results, we begin with a discussion of one-dimensional
conditions.

1.1 From concave to quasi-concave

Definition 1. (s-concavity of probability density) A function f : Rn → R+ is
said to be s-concave, for −∞ ≤ s ≤ 1, if

f (λx+ (1− λ)y) ≥ (λf(x)s + (1− λ)f(y)s)1/s ,

for all λ ∈ [0, 1],∀x, y ∈ Rn.



The following are some special cases: A function f : Rn → R+ is said to be

concave if, f (λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

logconcave if, f (λx+ (1− λ)y) ≥ f(x)λf(y)1−λ

harmonic-concave if, f (λx+ (1− λ)y) ≥
(

λ

f(x)
+

(1− λ)
f(y)

)−1

quasi-concave if, f (λx+ (1− λ)y) ≥ min{f(x), f(y)}

for all λ ∈ [0, 1],∀x, y ∈ Rn.
These conditions are progressively weaker, restricting the function value at a

convex combination of x and y to be at least the arithmetic average, geometric
average, harmonic average and minimum, respectively. Note that s1-concave
functions are also s2-concave if s1 > s2. It is thus easy to verify that:

concave ( s-concave (s > 0) ( logconcave ( s-concave (s < 0) ( quasi-concave.

Relaxing beyond quasi-concave would violate unimodality, i.e., there could be
two distinct local maxima, which appears problematic for all of the fundamen-
tal problems. Also, it is well-known that quasi-concave functions have poor
isoperimetry.

There is a different characterization of probability measures based on a gen-
eralization of the Brunn-Minkowski inequality. The Brunn-Minkowski inequality
states that the Euclidean volume (or Lebesgue measure) µ satisfies

µ (λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n,

for λ ∈ [0, 1] and compact subsets A,B ⊆ Rn, where λA + (1 − λ)B = {λa +
(1− λ)b : a ∈ A, b ∈ B} is the Minkowski sum.

Definition 2. (κ-concavity of probability measure) A probability measure µ over
Rn is κ-concave if

µ(λA+ (1− λ)B)κ ≥ λµ(A)κ + (1− λ)µ(B)κ,

∀A,B ⊆ Rn, ∀λ ∈ [0, 1].

Note that the Euclidean volume (or Lebesgue measure) is quasi-concave accord-
ing to Definition 1 but 1/n-concave according to Definition 2. Borell [Bor74,Bor75]
showed an equivalence between these two definitions as follows.

Lemma 1. An absolutely continuous probability measure µ on a convex set K ⊆
Rn is κ-concave, for −∞ < κ ≤ 1/n, if and only if there is a density function
p : Rn → R+, which is s-concave for s =

κ

1− κn
.



Thus, if the density function is s-concave for s ∈ [−1/n, 0], then the corre-
sponding probability measure is κ-concave for κ = s

1+ns . Bobkov [Bob07] proves
the following isoperimetric inequality for κ-concave probability measures for
−∞ < κ ≤ 1.

Theorem 2. Given a κ-concave probability measure µ, for any measurable sub-
set A ⊆ Rn,

µ(δA) ≥ c(κ)
m

min{µ(A), 1− µ(A)}1−κ

where m is the µ-median of the Euclidean norm x 7→ ‖x‖, for some constant
c(κ) depending on κ.

Therefore, by Lemma 1, we get an isoperimetric inequality for any s-concave
function f : Rn → R+, for s ∈ [−1/n, 0], as

πf (δA) ≥ c(s)
m

min{πf (A), 1− πf (A)}1−
s

1+ns ,

for any measurable set A ⊆ Rn.
In comparison, we prove a stronger isoperimetric inequality for the class of

−1/(n−1)-concave functions (which subsumes −1/n-concave functions) and we
remove the dependence on s in the inequality completely.

1.2 The Cauchy density

The generalized Cauchy probability density f : Rn → R+ parameterized by a
positive definite matrix A ∈ Rn×n and a vector m ∈ Rn, is given by

f(x) ∝ det(A)−1(
1 + ‖A(x−m)‖2

)(n+1)/2
.

For simplicity, we assume m = 0̄ using a translation. It is easy to sample this
distribution in full space (by an affine transformation it becomes spherically
symmetric and therefore a one-dimensional problem) [Joh87]. We consider the
problem of sampling according to the Cauchy density restricted to a convex set.
This is reminiscent of the work of Kannan and Li who considered the problem
of sampling a Gaussian distribution restricted to a convex set [KL96].

1.3 Our results

Our first result establishes good isoperimetry for −1/(n − 1)-concave functions
in Rn.

Theorem 3. Let f : Rn → R+ be a −1/(n− 1)-concave function with a convex
support K ⊆ Rn of diameter D, and let Rn = S1 ∪ S2 ∪ S3 be a measurable
partition of Rn into three non-empty subsets. Then

πf (S3) ≥ d(S1, S2)
D

min {πf (S1), πf (S2)} .



It is worth noting that the isoperimetric coefficient above is only smaller by a
factor of 2 when compared to that of logconcave functions (Theorem 1).

Next, we prove that beyond the class of −1/(n− 1)-concave functions, there
exist functions with exponentially small isoperimetric coefficient.

Theorem 4. For any ε > 0, there exists a −1/(n− 1− ε)-concave function f :
Rn → R+ with a convex support K of finite diameter and a partition Rn = S∪T
such that

πf (∂S)
min {πf (S), πf (T )}

≤ Cn(1 + ε)−εn

for some constant C > 0.

Theorems 3 and 4 can be summarized by the following figure.

Fig. 1. Limit of isoperimetry for s-concave functions

We prove that the ball walk with a Metropolis filter can be used to sam-
ple efficiently according to −1/(n− 1)-concave densities which satisfy a certain
Lipschitz condition. In each step, the ball walk picks a new point y, uniformly
at random from a small ball around the current point x, and moves to y with
probability min{1, f(y)/f(x)}. A distribution σ0 is said to be an H-warm start
(H > 0) for the distribution πf if for all S ⊆ Rn, σ0(S) ≤ Hπf (S). Let σm
denote the distribution after m steps of the ball walk with a Metropolis filter.

Definition 3. We call a function f : Rn → R+ to be (α, δ)-smooth if

max
{
f(x)
f(y)

,
f(y)
f(x)

}
≤ α,

for all x, y in the support of f with ‖x− y‖ ≤ δ.

Theorem 5. Let f : Rn → R+ be proportional to an s-concave (α, δ)-smooth
function, restricted to a convex body K ⊆ Rn of diameter D, where s ≥ −1/(n−
1). Let K contain a ball of radius δ and σ0 be an H-warm start. Then, after

m ≥
(
CnD2

δ2
log

2H
ε

)
·max

{
nH2

ε2
,

(α−s − 1)2

s2

}
steps of the ball walk with radius r ≤ min

{
εδ

16H
√
n
, |2sδ|α−s−1

}
, we have that

dtv(σm, πf ) ≤ ε,

for some absolute constant C, where dtv(·, ·) is the total variation distance.



Applying the above theorem directly to sample according to the Cauchy den-
sity, we get a mixing time of O

((
n3H2

ε2 log 2H
ε

)
·max

{
H2

ε2 , n
})

using parameters

δ = 1, α = e
n+1

2 and, D = 8
√

2nH
ε (one can prove that the probability measure

outside the ball of radius D around the origin is at most ε/2H for the chosen
value of D). Using a more careful analysis (comparison of 1-step distributions),
this bound can be improved to match the current best bounds for sampling
logconcave functions.

Theorem 6. Consider the Cauchy probability density f defined in Section 1.2,
restricted to a convex set K ⊆ Rn containing a ball of radius ‖A−1‖2 and let σ0

be an H-warm starting distribution. Then after

m ≥ O
(
n3H4

ε4
log

2H
ε

)
steps with ball-walk radius r = ε/8

√
n, we have

dtv(σm, πf ) ≤ ε,

where dtv(., .) is the total variation distance.

The proof of this theorem departs from its earlier counterparts in a significant
way. In addition to isoperimetry, and the closeness of one-step distributions of
nearby points, we have to prove that most of the measure is contained in a ball of
not-too-large radius. For logconcave densities, this large-ball probability decays
exponentially with the radius. For the Cauchy density it only decays linearly
(Proposition 3).

All missing proofs are available in the full version of the paper3.

2 Preliminaries

Let rBx denote a ball of radius r around point x. One step of the ball walk at a
point x defines a probability distribution Px over Rn as follows.

Px(S) =
∫
S∩rBx

min
{

1,
f(y)
f(x)

}
dy.

For every measurable set S ⊆ Rn the ergodic flow from S is defined as

Φ(S) =
∫
S

Px(Rn \ S)f(x)dx,

and the measure of S according to πf is defined as πf (S) =
∫
S
f(x)dx/

∫
Rn f(x)dx.

The s-conductance φs of the Markov chain defined by ball walk is

φs = inf
s≤πf (S)≤1/2

Φ(S)
πf (S)− s

.

3 http://arxiv.org/abs/0906.2448



To compare two distributions Q1, Q2 we use the total variation distance between
Q1 and Q2, defined by dtv(Q1, Q2) = supA |Q1(A) − Q2(A)|. When we refer to
the distance between two sets, we mean the minimum distance between any two
points in the two sets. That is, for any two subsets S1, S2 ⊆ Rn, d(S1, S2) :=
min{|u− v| : u ∈ S1, v ∈ S2}. Next we quote a lemma from [LS93] which relates
the s-conductance to the mixing time.

Lemma 2. Let 0 < s ≤ 1/2 and Hs = supπf (S)≤s |σ0(S)− πf (S)|. Then for
every measurable S ⊆ Rn and every m ≥ 0,

|σm(S)− πf (S)| ≤ Hs +
Hs

s

(
1− φ2

s

2

)m
.

Finally, the following localization lemma [LS93,KLS95] is a useful tool in the
proofs of isoperimetric inequalities.

Lemma 3. Let g : Rn → R and h : Rn → R be two lower semi-continuous
integrable functions such that∫

Rn

g(x)dx > 0 and
∫

Rn

h(x)dx > 0.

Then there exist two points a, b ∈ Rn and a linear function l : [0, 1] → R+ such
that∫ 1

0

g((1− t)a+ tb)l(t)n−1dt > 0 and
∫ 1

0

h((1− t)a+ tb)l(t)n−1dt > 0.

3 Isoperimetry

Here we prove an isoperimetric inequality for functions satisfying a certain uni-
modality criterion. We further show that −1/(n − 1)-concave functions satisfy
this unimodality criterion and hence have good isoperimetry.

We begin with a simple lemma that will be used in the proof of the isoperi-
metric inequality.

Lemma 4. Let p : [0, 1]→ R+ be a unimodal function, and let 0 ≤ α < β ≤ 1.
Then ∫ β

α

p(t)dt ≥ |α− β|min
{∫ α

0

p(t)dt,
∫ 1

β

p(t)dt
}
.

Now we are ready to prove an isoperimetric inequality for functions satisfying
a certain unimodality criterion.

Theorem 7. Let f : Rn → R+ be a function whose support has diameter D,
and f satisfies the following unimodality criterion: For any affine line L ⊆ Rn
and any linear function l : K ∩ L → R+, h(x) = f(x)l(x)n−1 is unimodal. Let
Rn = S1 ∪ S2 ∪ S3 be a partition of Rn into three non-empty subsets. Then

πf (S3) ≥ d(S1, S2)
D

min {πf (S1), πf (S2)} .



Proof. Suppose not. Define g : Rn → R and h : Rn → R as follows.

g(x) =


d(S1, S2)

D
f(x) if x ∈ S1

0 if x ∈ S2

−f(x) if x ∈ S3

and h(x) =


0 if x ∈ S1

d(S1, S2)
D

f(x) if x ∈ S2

−f(x) if x ∈ S3.

Thus ∫
Rn

g(x)dx > 0 and
∫

Rn

h(x)dx > 0,

Lemma 3 implies that there exist two points a, b ∈ Rn and a linear function
l : [0, 1]→ R+ such that∫ 1

0

g((1− t)a+ tb)l(t)n−1dt > 0 and
∫ 1

0

h((1− t)a+ tb)l(t)n−1dt > 0. (2)

Moreover, w.l.o.g. we can assume that the points a and b are within the support
of f , and hence ‖a− b‖ ≤ D. We may also assume that a ∈ S1 and b ∈ S2.
Consider a partition of the interval [0, 1] = Z1 ∪ Z2 ∪ Z3, where

Zi = {z ∈ [0, 1] : (1− z)a+ zb ∈ Si} .

For z1 ∈ Z1 and z2 ∈ Z2, we have

d(S1, S2) ≤ d ((1− z1) a+ z1b, (1− z2) a+ z2b) ≤ |z1 − z2|·‖a− b‖ ≤ |z1 − z2|D,

and therefore d(S1, S2) ≤ d(Z1, Z2)D. Now we can rewrite Equation (2) as∫
Z3

f((1− t)a+ tb)l(t)n−1dt <
d(S1, S2)

D

∫
Z1

f((1− t)a+ tb)l(t)n−1dt

≤ d(Z1, Z2)
∫
Z1

f((1− t)a+ tb)l(t)n−1dt

and similarly∫
Z3

f((1− t)a+ tb)l(t)n−1dt ≤ d(Z1, Z2)
∫
Z2

f((1− t)a+ tb)l(t)n−1dt

Define p : [0, 1] → R+ as p(t) = f((1 − t)a + tb)l(t)n−1. From the unimodality
assumption in our theorem, we know that p is unimodal. Rewriting the above
equations, we have∫

Z3

p(t)dt < d(Z1, Z2)
∫
Z1

p(t)dt and
∫
Z3

p(t)dt < d(Z1, Z2)
∫
Z2

p(t)dt. (3)

Now suppose Z3 is a union of disjoint intervals, i.e., Z3 =
⋃
i(αi, βi), 0 ≤ α1 <

β1 < α2 < β2 < · · · ≤ 1. By Lemma 4 we have∫ βi

αi

p(t)dt ≥ |αi − βi| ·min
{∫ αi

0

p(t)dt,
∫ 1

βi

p(t)dt
}
.



Therefore, adding these up we get∫
Z3

p(t)dt =
∑
i

∫ βi

αi

p(t)dt

≥ |αi − βi| ·
∑
i

min
{∫ αi

0

p(t)dt,
∫ 1

βi

p(t)dt
}

≥ d(Z1, Z2) ·min
{∫

Z1

p(t)dt,
∫
Z2

p(t)dt
}
.

The last inequality follows from the fact that either every interval in Z1 or every
interval in Z2 is accounted for in the summation. Indeed, suppose some inter-
val in Z2 is not accounted for in the summation. Then, that interval has to be
either the first or the last interval in [0, 1] in which case all intervals in Z1 are
accounted for. But this is a contradiction to Inequality (3). This completes the
proof of Theorem 7.

3.1 Isoperimetry of −1/(n − 1)-concave functions

We show that −1/(n − 1)-concave functions satisfy the unimodality criterion
used in the proof of Theorem 7. Therefore, as a corollary, we get an isoperimetric
inequality for −1/(n− 1)-concave functions.

Proposition 1. Let f : Rn → R+ be a smooth −1/(n−1)-concave function and
l : [0, 1]→ R+ be a linear function. Now let a, b ∈ Rn and define h : [0, 1]→ R+

as h(t) = f((1− t)a+ tb)l(t)n−1. Then h is a unimodal function.

We get Theorem 3 as a corollary of Theorem 7 and Proposition 1.

3.2 Lower bound for isoperimetry

In this section, we show that −1/(n − 1)-concave functions are the limit of
isoperimetry by showing a−1/(n−1−ε)-concave function with poor isoperimetry
for 0 < ε ≤ 1.

Proof (Proof of Theorem 4). The proof is based on the following construction.
Consider K ⊆ Rn defined as follows.

K =
{
x : 0 ≤ x1 <

1
1 + δ

and x2
2 + x2

3 + . . .+ x2
n ≤ (1− x1)2

}
,

where δ > 0. K is a parallel section of a cone symmetric around the X1-axis and
is therefore convex. Now we define a function f : Rn → R+ whose support is K.

f(x) =


C

(1− (1 + δ)x1)n−1−ε if x ∈ K,

0 if x /∈ K,



where C is the appropriate constant so as to make πf (K) = 1. By definition, f
is a −1/(n− 1− ε)-concave function.

Define a partition Rn = S∪T as S = {x ∈ K : 0 ≤ x1 ≤ t} and T = Rn \S.
It can be shown that the theorem holds for a suitable choice of t.

4 Sampling s-concave functions

Throughout this section, let f : Rn → R+ be an s-concave (α, δ)-smooth function
given by an oracle such that s ≥ −1/(n − 1). Let K be the convex body over
which we want to sample points according to f . We also assume that K contains
a ball of radius δ and is contained in a ball of radius D. We state a technical
lemma related to the smoothness and the concavity of the function.

Lemma 5. Suppose f : Rn → R is a s-concave (α, δ)-smooth function. For any
constant c such that 1 < c < α, if ‖x− z‖ ≤ |csδ|

α−s−1 , then f(x)
f(z) ≤ c.

The above lemma states that every s-concave (α, δ)-smooth function, is also
(c, |csδ|

(α−s−1) )-smooth for any constant c such that 1 < c < α. In particular, if
α > 2, this suggests that we may use the smoothness parameters to be (α′ =
2, δ′ = |2sδ|

α−s−1 ) and if α ≤ 2, then we may use (α′ = 2, δ′ = δ) as the parameters.

Thus, the function can be assumed to be (2,min{δ, |2sδ|α−s−1})-smooth.
In order to sample, we need to show that K contains points of good local

conductance. For this, define

Kr =
{
x ∈ K :

vol (rBx ∩K)
vol (rBx)

≥ 3
4

}
.

The idea is that, for appropriately chosen r, the log-lipschitz-like constraint will
enforce that the points in Kr have good local conductance. Further, we have
that the measure in Kr is close to the measure of f in K based on the radius r.

Lemma 6. For any r > 0, the set Kr is convex and

πf (Kr) ≥ 1− 4r
√
n

δ
.

4.1 Coupling

In order to prove conductance, we need to prove that when two points are ge-
ometrically close, then their one-step distributions overlap. We will need the
following technical lemma about spherical caps to prove this.

Lemma 7. Let H be a halfspace in Rn and Bx be a ball whose center is at a
distance at most tr/

√
n from H. Then

e−
t2
4 >

2 vol (H ∩ rB)
vol (rB)

> 1− t



Lemma 8. For r ≤ min{δ, |2sδ|α−s−1}, if u, v ∈ Kr, ‖u− v‖ < r/16
√
n, then

dtv(Pu, Pv) ≤ 1− 7
16

Proof. We may assume that f(v) ≥ f(u). Then,

dtv(Pu, Pv) ≤ 1− 1
vol (rB)

∫
rBv∩rBu∩K

min
{

1,
f(y)
f(v)

}
dy

Let us lower bound the second term in the right hand side.∫
rBv∩rBu∩K

min
{

1,
f(y)
f(v)

}
dy ≥

∫
rBv∩rBu∩K

min
{

1,
f(y)
f(v)

}
dy

≥
(

1
2

)
vol (rBv ∩ rBu ∩K) (By Lemma 5)

≥
(

1
2

)
(vol (rBv)− vol (rBv \ rBu)− vol (rBv \K))

≥
(

1
2

)(
vol (rBv)−

1
16

vol (rB)− 1
16

vol (rB)
)

≥
(

7
16

)
vol (rB)

where the bound on vol (rBv \ rBu) is derived from Lemma 7 and vol (rBv \K)
is bounded using the fact that v ∈ Kr. Hence,

dtv(Pu, Pv) ≤ 1− 7
16

4.2 Conductance and mixing time

Consider the ball walk with metropolis filter using the s-concave (α, δ)-smooth
density function oracle with ball steps of radius r.

Lemma 9. Let S ⊆ Rn be such that πf (S) ≥ ε1 and πf (Rn \S) ≥ ε1. Then, for

ball walk radius r ≤ min
{
ε1δ
8
√
n
, |2sδ|α−s−1

}
, we have that

Φ(S) ≥ r

29
√
nD

min{πf (S)− ε1, πf (Rn \ S)− ε1}

Using the above lemma, we prove Theorem 5.

Proof (Proof of Theorem 5). On setting ε1 = ε/2H in Lemma 9, we have that
for ball-walk radius r = min{ εδ

16H
√
n
, |2sδ|

(α−s−1)},

φε1 ≥
r

29
√
nD

.



By definition Hs ≤ H · s and hence by Lemma 2,

|σm(S)− πf (S)| ≤ H · s+H · exp
{
− mr2

219nD2

}
which gives us that beyond

m ≥ 219nD2

r2
log

2H
ε

steps, |σm(S)− πf (S)| ≤ ε. Substituting for r, we get the theorem.

4.3 Sampling the Cauchy density

In this section, we prove certain properties of the Cauchy density along with
the crucial coupling lemma leading to Theorem 6. Without loss of generality, we
may assume that the distribution given by the oracle is,

f(x) ∝
{

1/(1 + ||x||2)
n+1

2 if x ∈ K,
0 otherwise.

(4)

This is because, either we are explicitly given the matrix A of a general Cauchy
density, or we can compute it using the function f at a small number of points and
apply a linear transformation. Further, note that by the hypothesis of Theorem
6, we may assume that K contains a unit ball.

Proposition 2. The Cauchy density function is −1/(n− 1)-concave.

Proposition 3 says that we can find a ball of radius O(
√
n/ε1) outside which the

Cauchy density has at most ε1 probability mass.

Proposition 3.

Pr

(
‖x‖ ≥ 2

√
2n
ε1

)
≤ ε1.

Proposition 4 shows the smoothness property of the Cauchy density. This is
the crucial ingredient used in the stronger coupling lemma. Define Kr as before.
Then,

Proposition 4. For x ∈ Kr, let

Cx = {y ∈ rBx : |x · (x− y)| ≤ 4r||x||√
n
}

and y ∈ Cx. Then,
f(x)
f(y)

≥ 1− 4r
√
n

Finally, we have the following coupling lemma.



Lemma 10. For r ≤ 1/
√
n, if u, v ∈ Kr, ‖u− v‖ < r/16

√
n, then

dtv(Pu, Pv) <
1
2
.

The proof of conductance and mixing bound follow the proof of mixing bound
for s-concave functions closely. Comparing the above coupling lemma with that
of s-concave functions (Lemma 8), we observe that the improvement is obtained
due to the constraint on the radius of the ball walk in the coupling lemma. In
the case of Cauchy, a slightly relaxed radius suffices for points close to each other
to have a considerable overlap in their one-step distribution.

4.4 Discussion

There are two aspects of our algorithm and analysis that merit improvement. The
first is the dependence on the diameter, which could perhaps be made logarithmic
by applying an appropriate affine transformation as in the case of logconcave
densities. The second is eliminating the dependence on the smoothness parameter
entirely, by allowing for sharp changes locally and considering a smoother version
of the original function. Both these aspects seem to be tied closely to proving a
tail bound on a 1-dimensional marginal of an s-concave function.
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