
Algorithms for Implicit Hitting Set Problems

Karthekeyan Chandrasekaran ∗ Richard Karp † Erick Moreno-Centeno ‡

Santosh Vempala ∗

Abstract

A hitting set for a collection of sets is a set that has a non-

empty intersection with each set in the collection; the hitting

set problem is to find a hitting set of minimum cardinality.

Motivated by instances of the hitting set problem where the

number of sets to be hit is large, we introduce the notion

of implicit hitting set problems. In an implicit hitting set

problem the collection of sets to be hit is typically too large

to list explicitly; instead, an oracle is provided which, given

a set H, either determines that H is a hitting set or returns

a set that H does not hit. We show a number of examples

of classic implicit hitting set problems, and give a generic

algorithm for solving such problems optimally. The main

contribution of this paper is to show that this framework

is valuable in developing approximation algorithms. We

illustrate this methodology by presenting a simple on-line

algorithm for the minimum feedback vertex set problem on

random graphs. In particular our algorithm gives a feedback

vertex set of size n−(1/p) log np(1−o(1)) with probability at

least 3/4 for the random graph Gn,p (the smallest feedback

vertex set is of size n − (2/p) log np(1 + o(1))). We also

consider a planted model for the feedback vertex set in

directed random graphs. Here we show that a hitting set

for a polynomial-sized subset of cycles is a hitting set for the

planted random graph and this allows us to exactly recover

the planted feedback vertex set.

1 Introduction

In the classic Hitting Set problem, we are given a
universe U of elements and a collection T of subsets
S1, . . . , Sm of U ; the objective is to find a subset H ⊆ U
of minimum cardinality so that every subset Si in T
contains at least one element from H. The problem is
NP-hard [Kar72], approximable to within log2 |U | using
a greedy algorithm, and has been studied for many
interesting special cases.

There are instances of the hitting set problem where

∗Georgia Institute of Technology. Supported in part

by NSF awards AF-0915903 and AF-0910584. Email:
karthe@gatech.edu,vempala@cc.gatech.edu.
†University of California, Berkeley. Email:

karp@icsi.berkeley.edu
‡Texas A&M University. Email: e.moreno@tamu.edu

the number of subsets |T | to hit is exponential in the
size of the universe. Consequently, obtaining a hitting
set with approximation factor log2 |U | using the greedy
algorithm which examines all subsets is unreasonable for
practical applications. Our motivation is the possibility
of algorithms that run in time polynomial in the size of
the universe. In this paper, we introduce a framework
that could be useful in developing efficient approxima-
tion algorithms for instances of the hitting set problem
with exponentially many subsets to hit.

We observe that in many combinatorial problems,
T has a succinct representation that allows efficient
verification of whether a candidate set hits every subset
in T . Formally, in an implicit hitting set problem, the
input is a universe U and a polynomial-time oracle that,
given a set H, either determines that H is a hitting set
or returns a subset that is not hit by H. Thus, the
collection T of subsets to hit is not specified explicitly.
The objective is to find a small hitting set by making at
most polynomial(|U |) queries to the oracle. In Section
1.1, we show several well-known problems that can be
formulated as implicit hitting set problems.

We present a generic algorithm to obtain the opti-
mal solution of implicit hitting set problems in Section
2. As this algorithm solves optimally the NP-hard (clas-
sic) hitting set problem as a subroutine, its worst-case
running time is exponential as a function of |U |. The
main purpose of stating the generic algorithm is to de-
velop an intuition towards using the oracle. It suggests
a natural way to use the oracle: first (1) propose a can-
didate hitting set H, then (2) use the oracle to check if
the candidate set hits all the subsets, and if not obtain
a subset S that has not been hit, and finally (3) refine
H based on S and repeat until a hitting set is found.

The generic algorithm for the implicit hitting set
problem is in fact a generalization of online algorithms
for hitting set problems. Here, the ground set is
specified in advance as before and the subsets to be hit
arrive online. On obtaining a subset, the algorithm has
to decide which new element to include in the hitting set
and commit to the element. Thus, the online algorithm
is restricted in that the refinement procedure can only
add elements. Moreover, only those subsets that have
not been hit by the candidate set are revealed online

thereby saving the algorithm from having to examine
all subsets in T . This is similar to the mistake bound
learning model [Lit88].

We apply the implicit hitting set framework and
specialize the generic algorithm to the Minimum Feed-
back Vertex Set (FVS) problem: given a graph G(V,E),
find a subset S ⊆ V of smallest cardinality so that every
cycle in the graph contains at least one vertex from S.
Although the number of cycles could be exponential in
the size of the graph, one can efficiently check whether
a proposed set H hits all cycles (i.e., is a feedback ver-
tex set) or find a cycle that is not hit by H using a
breadth-first search procedure after removing the sub-
set of vertices H from the graph. The existence of a
polynomial time oracle shows that it is an instance of
the implicit hitting set problem.

The main focus of this paper is to develop algo-
rithms that find nearly optimal hitting sets in random
graphs or graphs with planted feedback vertex sets, by
examining only a polynomial number of cycles. For this
to be possible, we need the oracle to pick cycles that
have not yet been hit in a natural yet helpful manner. If
the oracle is adversarial, this could force the algorithm
to examine almost all cycles. We consider two natu-
ral oracles: one that picks cycles in breath-first search
(BFS) order and another that picks cycles according to
their size.

We prove that if cycles in the random graph Gn,p
are obtained in a breadth-first search ordering, there
is an efficient algorithm that examines a polynomial
collection T ′ of cycles to build a nearly optimal feedback
vertex set for the graph. The algorithm builds a solution
iteratively by (1) proposing a candidate for a feedback
vertex set in each iteration, (2) finding the next cycle
that is not hit in a breadth-first ordering of all cycles,
(3) augmenting the proposed set and repeating. A
similar result for directed random graphs using the
same algorithm follows by ignoring the orientation of
the edges. Our algorithm is an online algorithm i.e., it
commits to only adding and not deleting vertices from
the candidate feedback vertex set.

It is evident from our results that the size of the
feedback vertex set in both directed and undirected
random graphs is close to n, for sufficiently large p. This
motivates us to ask if a smaller planted feedback vertex
set in random graphs can be recovered by using the
implicit hitting set framework. This question is similar
in flavor to the well-studied planted clique problem
[Jer92, AKS98, FK08], but posed in the framework of
implicit hitting set problems. We consider a natural
planted model for the feedback vertex set problem in
directed graphs. In this model, a subset of δn vertices,
for some constant 0 < δ ≤ 1, is chosen to be the

feedback vertex set. The subgraph induced on the
complement is a random directed acyclic graph (DAG)
and all the other arcs are chosen with probability p
independently. The objective is to recover the planted
feedback vertex set. We prove that the optimal hitting
set for cycles of bounded size is the planted feedback
vertex set. Consequently, ordering the cycles according
to their sizes and finding an approximately optimal
hitting set for the small cycles is sufficient to recover
the planted feedback vertex set. This also leads to an
online algorithm when cycles are revealed in increasing
order of their size with ties broken arbitrarily.

We conclude this section with some well-known
examples of implicit hitting set problems.

1.1 Implicit Hitting Set Problems An implicit
hitting set problem is one in which, for each instance,
the set of subsets is not listed explicitly but instead
is specified implicitly by an oracle: a polynomial-time
algorithm which, given a set H ⊂ U , either certifies that
H is a hitting set or returns a subset that is not hit by
H.
Each of the following is an implicit hitting set problem:

• Feedback Vertex Set in a Graph or Digraph
Ground Set: Set of vertices of graph or digraph G.
Subsets: Vertex sets of simple cycles in G.

• Feedback Edge Set in a Digraph
Ground Set: Set of edges of digraph G.
Subsets: Edge sets of simple cycles in G.

• Max Cut
Ground Set: Set of edges of graph G.
Subsets: Edge sets of simple odd cycles in G.

• k-Matroid Intersection
Ground Set: Common ground set of k matroids.
Subsets: Subsets in the k matroids.

• Maximum Feasible Set of Linear Inequalities
Ground Set: A finite set of linear inequalities.
Subsets: Minimal infeasible subsets of the set of
linear inequalities.

• Maximum Feasible Set of Equations of the
Form xi − xj = cij (mod q)
This example is motivated by the Unique Games
Conjecture.

• Synchronization in an Acyclic Digraph
Ground Set: A collection U of pairs of vertices
drawn from the vertex set of an acyclic digraph
G.
Subsets: Minimal collection C of pairs from U with
the property that, if each pair in C is contracted to

a single vertex, then the resulting digraph contains
a cycle.

Organization. In Section 2, we present a generic
algorithm for the optimal solution of implicit hitting set
problems. Then, we focus on specializing this algorithm
to obtain small feedback vertex sets in directed and
undirected random graphs. We analyze the performance
of this algorithm in Section 3. We then consider a
planted model for the feedback vertex set problem in
directed random graphs. In Section 4, we give an
algorithm to recover the planted feedback vertex set by
finding an approximate hitting set for a polynomial-
sized subset of cycles. We prove a lower bound for
the size of the feedback vertex set in random graphs
in Section 5. We state our results more precisely in the
next section.

1.2 Results for Feedback Vertex Set Problems
We consider the feedback vertex set problem for the
random graph Gn,p, a graph on n vertices in which each
edge is chosen independently with probability p. Our
main result here is that a simple augmenting approach
based on ordering cycles according to a breadth-first
search (Algorithm Augment-BFS described in the next
section) has a strong performance guarantee.

Theorem 1.1. For Gn,p, such that p = o(1), there
exists a polynomial time algorithm that produces a
feedback vertex set of size at most n− (1/p) log (np)(1−
o(1)) with probability at least 3/4.

Throughout, o(1) is with respect to n. We complement
our upper bound with a lower bound on the feedback
vertex set for Gn,p obtained using simple union bound
arguments.

Theorem 1.2. Let r = 2
p log (np)(1 + o(1)) + 1. If

p < 1/2, then every subgraph induced by any subset of r
vertices in Gn,p contains a cycle with high probability.

This gives an upper bound of r−1 on the maximum
induced acyclic subgraph of Gn,p. So, the size of
the minimum feedback vertex set for Gn,p is at least
n− r+ 1 = n− (2/p) log np. A result of Fernandez de la
Vega [FdlV96] shows that Gn,p has an induced tree of
size at least (2/p) log np(1− o(1)), when p = o(1). This
gives the best possible existential result: there exists a
feedback vertex set of size at most n− (2/p) log np(1−
o(1)) with high probability in Gn,p, when p = o(1).
We note that this result is not algorithmic; Fernandez
de la Vega gives a greedy algorithm to obtain the
largest induced tree of size (1/p) log np(1 − o(1)) in
[FdlV86]. This algorithm is based on growing the
induced forest from the highest labeled vertex and

does not fall in the implicit hitting set framework
(when the graph is revealed as a set of cycles). In
contrast, our main contribution to the FVS problem
in random graphs is showing that a simple breadth-
first ordering of the cycles is sufficient to find a nearly
optimal feedback vertex set. We also note that our
algorithm is an online algorithm with good performance
guarantee when the cycles are revealed according to
a breadth-first ordering. Improving on the size of
the FVS returned by our algorithm appears to require
making progress on the long-standing open problem of
finding an independent set of size ((1 + ε)/p) log np in
Gn,p. Assuming an optimal algorithm for this problem
leads to an asymptotically optimal guarantee matching
Fernandez de la Vega’s existential bound.

Next, we turn our attention to the directed random
graph Dn,p on n vertices. The directed random graph
Dn,p is obtained as follows: choose a set of undirected
edges joining distinct elements of V independently with
probability 2p. For each chosen undirected edge {u, v},
orient it in one of the two directions {u→ v, v → u} in
Dn,p with equal probability.

The undirected graph GD obtained by ignoring the
orientation of the edges in Dn,p is the random graph
G(n, 2p). Moreover, a feedback vertex set in GD is also
a feedback vertex set for Dn,p. Therefore, by ignoring
the orientation of the arcs, the Augment-BFS algorithm
as applied to undirected graphs can be used to obtain a
feedback vertex set of size at most n− (1/2p) log (2np)
with probability at least 3/4. A theorem of Spencer
and Subramanian [SS08] gives a nearly matching lower
bound on the size of the feedback vertex set in Dn,p.

Theorem 1.3. [SS08] Consider the random graph
Dn,p, where np ≥ W , for some fixed constant W . Let
r = (2/ log (1− p)−1)(log (np)+3e). Every subgraph in-
duced by any subset of r vertices in G contains a cycle
with high probability.

It is evident from the results above that the feed-
back vertex set in a random graph contains most of its
vertices when p = o(1). This motivates us to ask if a
significantly smaller “planted” feedback vertex set in a
random graph can be recovered with the implicit hit-
ting set framework. In order to address this question,
we present the following planted model.

The planted directed random graph Dn,δ,p on n ver-
tices for 0 < δ ≤ 1 is obtained as follows: Choose δn
vertices arbitrarily to be the planted subset P . Each
pair (u, v) where u ∈ P, v ∈ V , is adjacent indepen-
dently with probability 2p and the corresponding edge
is oriented in one of the two directions {u→ v, v → u} in
Dn,δ,p with equal probability. The arcs between vertices
in V \P are obtained in the following manner to ensure

that the subgraph induced on V \ P is a DAG: Pick
an arbitrary permutation of the vertices in V \P . With
the vertices ordered according to this permutation, each
forward arc is present with probability p independently;
no backward arcs occur according to this ordering.

Figure 1: Planted Model

We prove that for graphs Dn,δ,p, for large enough
p, it is sufficient to hit cycles of small size to recover
the planted feedback vertex set. For example, if p ≥
C0/n

1/3 for some absolute constant C0, then it is
sufficient to find the best hitting set for triangles in
Dn,δ,p. This would be the planted feedback vertex set.
We state the theorem for cycles of length k.

Theorem 1.4. Let D be a planted directed random
graph Dn,δ,p with planted feedback vertex set P , where
p ≥ C/n1−2/k for some constant C and 0 < δ ≤ 9/19.
Then, with high probability, the smallest hitting set for
the set of cycles of size k in D is the planted feedback
vertex set P .

Thus, in order to recover the planted feedback vertex
set, it is sufficient to obtain cycles in increasing order of
their sizes and find the best hitting set for the subset of
all cycles of size k. Moreover, the expected number of
cycles of length k is at most (nkp)k = poly(n) for the
mentioned range of p and constant k. Thus, we have a
polynomial-sized collection T ′ of cycles, such that the
optimal hitting set for T ′ is also the optimal hitting set
for all cycles in Dn,δ,p.

However, finding the smallest hitting set is NP-
hard even for triangles. We give an efficient algorithm
to recover the planted feedback vertex set using an
approximate hitting set for the small cycles.

Theorem 1.5. Let D be a planted directed random
graph Dn,δ,p with planted feedback vertex set P , where
p ≥ C/n1−2/k for some constant C and k ≥ 3, 0 < δ ≤
1/2k. Then, there exists an algorithm to recover the
planted feedback vertex set P with high probability; this
algorithm has an expected running time of (nkp)O(k).

2 Algorithms

In this section, we mention a generic algorithm for im-
plicit hitting set problems. We then focus on specializ-
ing this algorithm to the feedback vertex set problems
in directed and undirected graphs.

2.1 A Generic Algorithm We mention a generic
algorithm for solving instances of the implicit hitting
set problem optimally with the aid of an oracle and a
subroutine for the exact solution of (explicit) hitting set
problems. The guiding principle is to build up a short
list of important subsets that dictate the solution, while
limiting the number of times the subroutine is invoked,
since its computational cost is high.

A set H ⊂ U is called feasible if it is a hitting set
for the implicit hitting set problem, and optimal if it is
feasible and of minimum cardinality among all feasible
hitting sets. Whenever the oracle reveals that a set H
is not feasible, it returns c(H), a subset that H does not
hit. Each generated subset c(H) is added to a growing
list Γ of subsets. A set H is called Γ-feasible if it hits
every subset in Γ and Γ-optimal if it is Γ-feasible and of
minimum cardinality among all Γ-feasible subsets. If a
Γ-optimal set K is feasible then it is necessarily optimal
since K is a valid hitting set for the implicit hitting
set problem which contains subsets in Γ, and K is the
minimum hitting set for subsets in Γ. Thus the goal of
the algorithm is to construct a feasible Γ-optimal set.
Generic Algorithm
Initialize Γ← ∅.

1. Repeat:

(a) H ← U .

(b) Repeat while there exists a Γ-feasible set H ′ =
(H ∪X)− Y such that X,Y ⊆ U , |X| < |Y |:

i. If H ′ is feasible then H ← H ′; else Γ ←
Γ ∪ {c(H ′)}.

(c) Construct a Γ-optimal set K.

(d) If |H| = |K| then return H and halt (H is
optimal); if K is feasible then return K and
halt (K is optimal); else Γ← Γ ∪ {c(K)}.

Remark 1. Since the generic algorithm solves opti-
mally an NP-hard problem as a subroutine, its worst-
case execution time is exponential in |U |. Its effective-
ness in practice depends on the choice of the missed
subset that the oracle returns.

A companion paper [KMC] describes successful
computational experience with an algorithm that for-
mulates a multi-genome alignment problem as an im-
plicit hitting set problem, and solves it using a specially
tailored variant of the generic algorithm.

Algorithm Augment-BFS

1. Start from an arbitrary vertex as a surviving vertex. Initialize i=1.

2. Repeat:

(a) Obtain cycles induced by one step BFS-exploration of the surviving vertices at
depth i. Delete vertices at depth i+1 that are present in these cycles. Declare
the remaining vertices at depth i+1 as surviving vertices.

(b) If no vertices at depth i+1 are surviving vertices, terminate and output the set
of all deleted vertices.

(c) i=i+1.

2.2 Algorithm Augment-BFS In this section, we
give an algorithm to find the feedback vertex set in
both undirected and directed graphs. Here, we use
an oracle that returns cycles according to a breadth-
first search ordering. Instead of the exact algorithm
for the (explicit) hitting set problem, as suggested in
the generic algorithm, we use a simpler strategy of
picking a vertex from each missed cycle. Essentially, the
algorithm considers cycles according to a breadth-first
search ordering and maintains an induced tree on a set
of vertices denoted as surviving vertices. The vertices
deleted in the process will constitute a feedback vertex
set. Having built an induced tree on surviving vertices
up to a certain depth i, the algorithm is presented with
cycles obtained by a one-step BFS exploration of the
surviving vertices at depth i. For each such cycle, the
algorithm picks a vertex at depth i + 1 to delete. The
vertices at depth i + 1 that are not deleted are added
to the set of surviving vertices, thereby leading to an
induced tree on surviving vertices up to depth i+ 1.
Remark 2. Although a very similar algorithm can be
used for other variants of the feedback set problem, we
note that these problems in random graphs turn out to
be easy. For example, the feedback edge set problem
is equivalent to the maximum spanning tree problem,
while the feedback arc set problem has tight bounds for
random graphs using very simple algorithms.

3 Feedback Vertex Set in Random Graphs

In this section, we show that Augment-BFS can be
used to find a nearly optimal feedback vertex set in the
undirected random graph Gn,p. Our main contribution
is a rigorous analysis of the heuristic of simple cycle
elimination in BFS order. We say that a vertex v is a
unique neighbor of a subset of vertices L if and only if
v is adjacent to exactly one vertex in L.

In Algorithm Augment-BFS, we obtain induced
cycles in BFS order having deleted the vertices from
the current candidate FVS S. We refine the candidate

FVS S precisely as follows to obtain an induced
BFS tree with unit increase in height: Consider the set
c(S) of cycles obtained by one-step BFS exploration
from the set of vertices at current depth. Let K denote
the set of unexplored vertices in the cycles in c(S)
(K is a subset of the vertices obtained by one-step
BFS exploration from the set of vertices at current
depth). Among the vertices in K include all non-unique
neighbors of the set of vertices at current depth into S.
Find a large independent set in the subgraph induced
by the unique neighbors R ⊆ K of the set of vertices at
current depth. Include all vertices in R that are not in
the independent set into S. This iterative refinement
process is a natural adaptation of the idea behind the
generic algorithm to the feedback vertex set problem
where one collects a subset of cycles to find a hitting
set H for these cycles and proposes H as the candidate
set to obtain more cycles that have not been hit.

Figure 2: BFS Exploration

Essentially, the algorithm maintains an induced
BFS tree by deleting vertices to remove cycles. The
set of deleted vertices form a FVS. Consequently at

Algorithm Grow-induced-BFS

1. Start from an arbitrary vertex v at level 0, set L0 = {v}. Mark v as exposed. Fix
c := np.

2. Explore levels i = 0, · · · , T − 1, where T =
⌈

ln (1/16p)−ln ln (1/16p)
ln (c+20

√
c)

⌉
in BFS order as follows:

(a) Let Ki+1 be the subset of neighbors of Li among the unexposed vertices, where Li
is the set of surviving vertices at level i.

(b) Mark the vertices in Ki+1 as exposed.

(c) Let Ri+1 ⊆ Ki+1 be the subset of vertices in Ki+1 that are unique neighbors of
Li.

(d) For every edge (u, v) that is present between vertices u, v ∈ Ri+1, add either u or
v to Wi+1.

(e) Set Li+1 = Ri+1 \Wi+1.
(The set of surviving vertices at level i + 1, namely Li+1 is an independent set

in the subgraph induced by Ri+1.)

3. On obtaining LT−1, set RT = unique neighbors of LT among the unexposed vertices.
In the subgraph induced by RT , find an independent set LT as follows.

(a) Fix an arbitrary ordering of the vertices of RT . Repeat while RT 6= ∅:
• Add the next vertex v ∈ RT to LT . Let N(v)= neighbors of v in RT . Set
RT ← RT \N(v).

4. Return S = V \ ∪Ti=0Li as the feedback vertex set.

each level of the BFS exploration, one would prefer to
add as many vertices from the next level K as possible
maintaining the acyclic property. One way to do this is
as follows: Delete all the non-unique neighbors of the
current level from K thus hitting all cycles across the
current and next level. There could still be cycles using
an edge through the unique neighbors. To hit these, add
a large independent set from the subgraph induced by
the unique neighbors and delete the rest. Observe that
this induced subgraph is a random graph on a smaller
number of vertices. However, even for random graphs,
it is open to find the largest independent set efficiently
and only a factor 2 approximation is known.

In our analysis, instead of using the two approxi-
mate algorithm for the independent set problem, we use
the simple heuristic of deleting a vertex for each edge
that is present in the subgraph to find an independent
set at each level. In order to lower bound the size of
the induced tree, it suffices to consider growing the
BFS-tree up to a certain height T using this heuristic
and then using the 2-approximate algorithm for inde-
pendent set at height T to terminate the algorithm.
The size of the induced tree obtained using Algorithm
Augment-BFS is at least as large as the one produced
by the process just described. To simplify our analysis,

it will be useful to restate the algorithm as Algo-
rithm Grow-induced-BFS.

We remark that improving the approximation factor
of the largest independent set problem in Gn,p would
also improve the size of the FVS produced. Our analysis
shows that most of the vertices in the induced BFS
tree get added at depth T as an independent set.
Moreover, the size of this independent set is close to
(2/p) log np(1 − o(1)). Consequently, any improvement
on the approximation factor of the largest independent
set problem in Gn,p would also lead to improving the
size of the independent set found at depth T . This
would increase the number of vertices in the induced
BFS tree and thereby reduce the number of vertices in
the feedback vertex set.

Observe that Algorithm Grow-induced-BFS can be
used for the directed random graph Dn,p by ignoring the
orientation of the edges to obtain a nearly optimal feed-
back vertex set. Such a graph obtained by ignoring the
orientation of the edges is the random graph G(n, 2p).
Further, a FVS in such a graph is also a FVS in the
directed graph. Consequently, we have the following
theorem.

Theorem 3.1. For Dn,p, there exists a polynomial
time algorithm that produces a FVS of size at most
n− (1/2p)(log (np)− o(1)) with probability at least 3/4.

By Theorem 1.3, we see that the algorithm is nearly
optimal for directed random graphs.

Next, we analyze Algorithm Grow-induced-BFS to
find the size of the FVS that it returns. For i =
0, · · · , T , let Li be the set of surviving vertices at level
i with li := |Li|, Ri+1 be the set of unique neighbors of
Li with ri+1 := |Ri+1|, and Ui be the set of unexposed
vertices of the graph after i levels of BFS exploration
with ui := |Ui|. Observe that Ui := V \ (L0 ∪ij=1 Ki).

We will need the following theorem due to Frieze
[Fri90], about the size of the independent set.

Theorem 3.2. [Fri90] Let d = np and ε > 0 be fixed.
Suppose dε ≤ d = o(n) for some sufficiently large
fixed constant dε. Then, almost surely, the size of the
independent set in Gn,p is at least

(
2
p

)
(log np− log log np− log 2 + 1− 0.5ε).

3.1 Large Set of Unique Neighbors The follow-
ing lemma gives a concentration of the number of sur-
viving vertices, unexposed vertices and unique neigh-
bors to survivors at a particular level. It shows that
upon exploring t levels according to the algorithm, the
number of surviving vertices at the t-th level, lt, is not
too small while the number of unexposed vertices, ut,
is large. It also shows a lower bound on the number of
unique neighbors rt+1 to a level of survivors. This fact
will be used in proving Theorem 1.1.

Lemma 3.1. Let c := np and T be the largest integer
that satisfies 16Tp(c + 20

√
c)T−1 ≤ 1/2. Then, with

probability at least 3/4, ∀t ∈ {0, 1, · · · , T − 1},

1.

ut ≤

(
n− 1

4

t∑
i=0

(c− 20
√
c)i
)(

1 +

√
ln lnn
n

)

ut ≥ (n−
t∑
i=0

(c+ 20
√
c)i)

(
1−

√
ln lnn
n

)

2.

lt ≤
(
c+ 20

√
c
)t

lt ≥
(
c− 20

√
c
)t (1− 16Tp(c+ 20

√
c)t)

×

(
1−

∑t
i=0(c+ 20

√
c)i

n

)

3.

rt ≤ (c+ 20
√
c)t+1

(
1 +

√
ln lnn
n

)

rt ≥
(c− 20

√
c)t+1

4

(
1−

∑t+1
i=0(c+ 20

√
c)i

n

)

×

(
1−

√
ln lnn
n

)

Now, we are ready to prove Theorem 1.1.

3.2 Proof of main theorem

Proof. [Proof of Theorem 1.1] Our objective is to use
the fact that the size of the surviving set of vertices
is large when the algorithm has explored T − 1 levels.
Moreover, the number of unexposed vertices is also
large. Thus, there is a large independent set among
the unique neighbors of the surviving vertices. This set
along with the surviving vertices up to level T − 1 will
form a large induced tree. We will now prove that the
size of the independent set among the unique neighbors
of LT−1 is large.

By Theorem 3.2, if rT p > dε for some constant dε
and rT p = o(rT), then there exists an independent set
of size (2/p) log (rT p)(1−o(1)). It suffices to prove that
rT is large and is such that rT p > dε.

Note that the choice of T =
⌈

ln (1/16p)−ln ln (1/16p)
ln (c+20

√
c)

⌉
used in the algorithm satisfies the hypothesis of Lemma
3.1. Therefore, using Lemma 3.1, with probability at
least 3/4, we have

rT ≥
(c− 20

√
c)T

4

(
1−

∑T
i=0(c+ 20

√
c)i

n

)

×

(
1−

√
ln lnn
n

)

≥ (c− 20
√
c)

64p

(
1−

∑T
i=0(c+ 20

√
c)i

n

)

×

(
1−

√
ln lnn
n

)

≥ c− 20
√
c

28p
≥ dε

p

for sufficiently large c since(
1−

∑T
i=0(c+ 20

√
c)i

n

)(
1−

√
ln lnn
n

)
≥ 15

16
· 1

2
.

Consequently, by Theorem 3.2, there exists an
independent set of size at least (2/p) log (rT p)(1−o(1)).

Moreover, step 3 of the algorithm finds a 2-approximate
independent set (see [GM75, McD84]). Therefore, the
size of the independent set found in step 3 is at least
(1/p) log rT p(1− o(1)), which is greater than(

1
p

)
log (c)(1− o(1)) =

(
1
p

)
log (np)(1− o(1)).

Note that this set gets added to the tree obtained by
the algorithm which increases the number of vertices in
the tree while maintaining the acyclic property of the
induced subgraph. Hence, with probability at least 3/4,
the induced subgraph has

∑T−1
i=0 li + (1/p) log np(1 −

o(1)) vertices. Consequently, the FVS obtained has size
at most n − (1/p) log np(1 − o(1)) with probability at
least 3/4.

4 Planted Feedback Vertex Set Problem

We prove Theorems 1.4 and 1.5 in this section.
The proof of Theorems 1.4 and 1.5 are based on the

following fact formalized in Lemma 4.1: if S ⊆ V \ P
is a subset of vertices of size at least (1 − δ)n/10, then
with high probability, every vertex u ∈ P induces a k-
cycle with vertices in S. Consequently, a small hitting
set H for the k-cycles should contain either all vertices
in P or most vertices from V \P . If some vertex u ∈ P
is not present in H, then the size of H will be large
since it should contain most vertices from V \ P . This
contradicts the fact that H is a small hitting set. Thus
H should contain the planted feedback vertex set P .
This fact is stated in a general form based on the size
of H in Lemma 4.2.

For Theorem 1.4, H is the smallest hitting set. By
the previous argument H ⊇ P , and we are done since
no additional vertex v ∈ V \ P will be present in H
(in fact, P is a hitting set for all cycles since it is a
feedback vertex set). We formalize these arguments in
this section.

Lemma 4.1. Let Dn,δ,p be a planted directed random
graph where p ≥ C/n1−2/k for some constants C, k, δ.
Then, with high probability, for every vertex v ∈ P ,
there exists a cycle of size k through v in the subgraph
induced by S ∪{v} in Dn,δ,p if S is a subset of V \P of
size at least |V \ P |/10 = (1− δ)n/10.

We give a proof of this lemma by the second moment
method later. It leads to the following important
consequence which will be used to prove Theorems 1.4
and 1.5. It states that every sufficiently small hitting
set for the k-cycles in Dn,δ,p should contain every vertex
from the planted feedback vertex set.

Lemma 4.2. Let H be a hitting set for the k-cycles in
Dn,δ,p where p ≥ C/n1−2/k for some constants C, k, δ.
If |H| ≤ tδn where t ≤ 9(1− δ)/10δ, then H ⊇ P .

Proof. Suppose u ∈ P and u 6∈ H. Then H should
contain at least |V \P |− |V \P |/10 vertices from V \P ,
else by Lemma 4.1, there exists a k-cycle involving u
and some k − 1 vertices among the |V \ P |/10 vertices
that H does not contain contradicting the fact that H
hits all cycles of length k. Therefore, |H| > |V \ P | −
|V \ P |/10 = (1 − δ)9n/10 ≥ tδn by the choice of t.
Thus, the size of H is greater than tδn, a contradiction.

Proof. [Proof of Theorem 1.4] We will first show that
the smallest hitting set for the k-cycles inDn,δ,p is of size
exactly |P | = δn. By Lemma 4.1 there exists a k-cycle
through every vertex v ∈ P and some {u1, · · · , uk−1} ⊂
S if S ⊂ V \ P and |S| ≥ (1− δ)n/10.

Lemma 4.3. If a subset H ⊆ V hits all cycles of length
k in Dn,δ,p, then |H| ≥ |P |.

Proof. [Proof of Lemma 4.3] If H contains all vertices in
P , then we are done. Suppose not. Let u ∈ P and u 6∈
H. Then H should contain at least |V \P | − |V \P |/10
vertices from V \ P , else by Lemma 4.1, there exists a
k-cycle involving u and some k − 1 vertices among the
|V \P |/10 vertices that H does not contain. This would
contradict the fact that H hits all cycles of length k.
Therefore, |H| > |V \P | − |V \P |/10 = (1− δ)9n/10 ≥
δn = |P | since δ ≤ 9/19.

Therefore, every hitting set for the subset of k-
cycles should be of size at least |P | = δn. Also, we
know that P is a hitting set for the k-cycles since P
is a feedback vertex set in Dn,δ,p. Thus, the optimum
hitting set for the k-cycles is of size exactly |P |.

Let H be the smallest hitting set for the k-cycles.
Then |H| = δn. It is easily verified that t = 1 satisfies
the conditions of Lemma 4.2 if δ ≤ 9/19. Therefore,
H ⊇ P . Along with the fact that H = δn = |P |, we
conclude that H = P .

4.1 Algorithm to Recover Planted Feedback
Vertex Set In this section, we give an algorithm
to recover the planted feedback vertex set in Dn,δ,p

thereby proving Theorem 1.5. Theorem 1.4 suggests an
algorithm where one would obtain all cycles of length
k and find the best hitting set for these set of cycles.
Even though the number of k-cycles is polynomial, we
do not have a procedure to find the best hitting set for
k-cycles. However, by repeatedly taking all vertices of
a cycle into the hitting set and removing them from the
graph, we do have a simple greedy strategy that finds
a k-approximate hitting set. We will use this strategy
to give an algorithm that recovers the planted feedback
vertex set.

Algorithm Recover-Planted-FVS(Dn,δ,p =
D(V,E))

1. Obtain cycles in increasing order of size until all
cycles of length k are obtained. Let T ′ be the
subset of cycles. Let S be the empty set.

2. While there exists a cycle T ∈ T ′ such that S does
not hit T ,

(a) Add all vertices in T to S.

3. Return H, where H = {u ∈ S : ∃ k-cycle through
v in the subgraph induced by V \ S ∪ {u}}.

The idea behind the algorithm is the following:
The set S obtained at the end of step 2 in the above
algorithm is a k-approximate hitting set and hence is of
size at most kδn. Using Lemma 4.2, it is clear that S
contains P - indeed, if S does not contain all vertices in
P , then S should contain most of the vertices in V \ P
contradicting the fact that the size of S is at most kδn.
Further, owing to the choice of δ, it can be shown that S
does not contain at least |V \P |/10 vertices from V \P .
Therefore, by Lemma 4.1, every vertex v ∈ P induces a
k-cycle with some subset of vertices from V \ S. Also,
since V \ P is a DAG no vertex v ∈ V \ P induces
cycles with any subset of vertices from V \ S ⊆ V \ P .
Consequently, a vertex v induces a k-cycle with vertices
in V \ S if and only if v ∈ P . Thus, the vertices in P
are identified exactly.

Proof. [Proof of Theorem 1.5] We use Algorithm
Recover-Planted-FVS to recover the planted feedback
vertex set from the given graph D = Dn,δ,p. Since we
are using the greedy strategy to obtain a hitting set S
for T ′, it is clear that S is a k-approximate hitting set.
Therefore |S| ≤ kδn. It is easily verified that t = k
satisfies the conditions of Lemma 4.2 if δ ≤ 1/2k. Thus,
all vertices from the planted feedback vertex set P are
present in the subset S obtained at the end of step 2 in
the algorithm.

By the choice of δ ≤ 1/2k, it is true that |S| ≤
kδn ≤ 9(1 − δ)n/10 = 9|V \ P |/10. Hence, |V \ S| ≥
|V \ P |/10.

Since S ⊇ P , the subset of vertices V \ S does
not contain any vertices from the planted set. Also,
the number of vertices in V \ S is at least |V \ P |/10.
Consequently, by Lemma 4.1, each vertex v ∈ P induces
at least one k-cycle with vertices in V \S. Since V \P is
a DAG, none of the vertices u ∈ V \P induce cycles with
vertices in V \S. Therefore, a vertex v ∈ S induces a k-
cycle with vertices in V \S if and only if v ∈ P . Hence,
the subset H output by Algorithm Recover-Planted-
FVS is exactly the planted feedback vertex set P .

Next we prove that the algorithm runs in polyno-
mial time in expectation. The following lemma shows
an upper bound on the expected number of cycles of
length k. It is proved later by a simple counting argu-
ment.

Lemma 4.4. The expected number of cycles of length k
in Dn,δ,p is at most (nkp)k.

Since the expected number of cycles obtained by the
algorithm is (nkp)k by Lemma 4.4, the algorithm uses
(nkp)k-sized storage memory. Finally, since the size of
T ′ is (nkp)k, steps 2 and 3 of the algorithm can be
implemented to run in expected (nkp)O(k) time.

5 Proofs

5.1 Lower Bound for FVS in Random Graphs
In this section, we prove the lower bound for the
Feedback Vertex Set in random graphs. We consider the
dual problem - namely the maximum induced acyclic
subgraph.

We will need the following bound on the number
of ways to partition a positive integer n into k positive
integers.

Theorem 5.1. [dAP07] Let pk(n) denote the number
of ways to partition n into exactly k parts. Then there
exists an absolute constant A < 1 such that

pk(n) < A
ec
√
n−k

(n− k)3/4
e
−2
√
n−k
c L2(e−

c(k+1/2)
2
√
n−k)

where c = π
√

2/3 and L2(x) =
∑∞
m=1

xm

m2 for |x| ≤ 1.

Remark 3. Since we will not need such a tight bound,
we will use pk(n) < C1e

C2(n−k) for some constants
C1, C2 > 0.

We prove Theorem 1.2 now based on simple count-
ing arguments. We observe that the proof of Theorem
1.3 given by Spencer and Subramanian is also based on
similar counting arguments while observing that if a di-
rected graph is acyclic, then there exists an ordering of
the vertices such that each arc is in the forward direc-
tion.

Proof. [Proof of Theorem 1.2] First note that every
induced subgraph on r vertices is a graph from the
family G(r, p). We bound the probability that a graph
H = G(r, p) is a forest.

Pr (H is a forest)

≤
r∑

k=1

∑
n1+···+nk=r,ni>0

No. of forests with spanning

trees on n1, · · · , nk vertices
× Pr (Forest with k components)

=
r∑

k=1

∑
n1+···+nk=r,ni>0

(
r!∏k
i=1 ni!

)(
k∏
i=1

nni−2
i

)
× pr−k(1− p)(

r
2)−r+k

≤ r!(1− p)(
r
2)

r∑
k=1

∑
n1+···+nk=r,ni>0

(
p

1− p

)r−k
≤ r!(1− p)(

r
2)

r∑
k=1

∑
n1+···+nk=r,ni>0

(2p)r−k

(since p < 1/2)

≤ r!(1− p)(
r
2)

r∑
k=1

(2p)r−k
∑

n1+···+nk=r,ni>0

1

= r!(1− p)(
r
2)

r∑
k=1

(2p)r−k pk(r)

≤ r!(1− p)(
r
2)

r∑
k=1

(2p)r−k C1e
C2(r−k)

(by Remark 3)

≤ C1r
r(1− p)(

r
2)

r∑
k=1

(2eC2p)r−k

≤ C1(1− p) r
2
2 nr

r∑
k=1

(2eC2p)r−k

(since r ≤ n)

≤ C1(1− p) r
2
2 r(2eC2np)r

≤ e−r
(
pr
2 −log (2eC2np)− log (C1r)

r

)

which tends to zero when r > 2
p (log np)(1 + o(1)).

5.2 Feedback Vertex Set in Random Graphs
We will use the following Chernoff bound for the con-
centration of the binomial distribution.

Lemma 5.1. Let X =
∑n
i=1Xi where Xi are i.i.d.

Bernoulli random variables with Pr (Xi = 1) = p. Then

Pr (|X − np| ≥ a√np) ≤ 2e−a
2/2.

Proof. [Proof of Lemma 3.1] We prove the lemma by
induction on t. We will prove the stronger induction

hypothesis that every li, ui for i ∈ {0, 1, · · · , t} satisfy
their respective concentration bounds with probability
at least

at := 1− t

16T
− 1

16

t∑
i=1

1/i2.

We will prove the concentration of ri+1 as a consequence
of li and ui satisfying their respective concentration
bounds. We will in fact show that the failure probability
of ri+1 satisfying its concentration bound conditioned
on li and ui satisfying their respective concentration
bounds will be at most 1/(32(i + 1)2). It immediately
follows that with failure probability at most (t/16T) +
(3/32)

∑t
i=1(1/i2) + (1/32(t + 1)2) ≤ 1/4, every ri+1,

ui and li, for i ∈ {0, 1, · · · , t} satisfies its respective
concentration bound leading to the conclusion of the
lemma.

For the base case, consider t = 0. It is clear
that u0 = n − 1 and l0 = 1 satisfy the concentration
bounds with probability 1. For the induction step, the
induction hypothesis is the following: With probability
at least at, the concentration bounds are satisfied
for ui and li for every i ∈ {0, 1, · · · , t}. We will
bound the probability that ut+1 or lt+1 fails to satisfy
its corresponding concentration bound conditioned on
the event that ui, li for i ∈ {0, 1, · · · , t} satisfy their
respective concentration bounds.
1. To prove the concentration bound for ut+1, ob-
serve that ut+1 is a binomial distribution with ut tri-
als and success probability (1 − p)lt . Indeed, ut+1

is the number of vertices among Ut which are not
neighbors of vertices in Lt. For each vertex x ∈ Ut,
Pr (x has no neighbor in Lt) = (1− p)lt .

Therefore, by Lemma 5.1, we have that
Pr
(
|ut+1 − ut(1− p)lt | > γt+1

√
ut(1− p)lt

)
≤ 2e−γ

2
t+1/2 =

1
32(t+ 1)2

with γt+1 =
√

4 ln 8(t+ 1). Hence, with probability at
least 1− (1/32(t+ 1)2),

ut+1 ≤ ut(1− p)lt
(

1 +

√
4 ln 8(t+ 1)
ut(1− p)lt

)
,

ut+1 ≥ ut(1− p)lt
(

1−

√
4 ln 8(t+ 1)
ut(1− p)lt

)
.

Now, using the bounds on ut and lt,

4 ln 8(t+ 1)
ut(1− p)lt

≤ 10 ln lnn
n

since t+ 1 ≤ T ≤ lnn,

(n−
t∑
i=0

(c+ 20
√
c)i) ≥ 15n

16
,

(1− p(c+ 20
√
c)t) ≥ 15

16
and(

1−
√

ln lnn
n

)
≥ 1

2
.

Hence,

ut+1 ≤ ut(1− p)lt
(

1 +

√
ln lnn
n

)
(5.1)

ut+1 ≥ ut(1− p)lt
(

1−
√

ln lnn
n

)
.(5.2)

Therefore,

ut+1 ≥ ut(1− p)lt
(

1−
√

ln lnn
n

)
(Using inequality 5.2)

≥ ut(1− ltp)

(
1−

√
ln lnn
n

)

≥ (n−
t∑
i=0

(c+ 20
√
c)i)

(
1− c(c+ 20

√
c)t

n

)

×

(
1−

√
ln lnn
n

)
(Using the bounds on ut and lt)

≥ (n−
t∑
i=0

(c+ 20
√
c)i)

(
1− (c+ 20

√
c)t+1

n

)

×

(
1−

√
ln lnn
n

)

=

(
n−

t∑
i=0

(c+ 20
√
c)i − (c+ 20

√
c)t+1

+
(c+ 20

√
c)t+1

n

t∑
i=0

(c+ 20
√
c)i
)

×

(
1−

√
ln lnn
n

)

≥

(
n−

t+1∑
i=0

(c+ 20
√
c)i
)(

1−
√

ln lnn
n

)

which proves the lower bound. The upper bound is

obtained by proceeding similarly:

ut+1 ≤ ut(1− p)lt
(

1 +

√
ln lnn
n

)
(Using inequality 5.1)

≤ ut
(

1− ltp

2

)(
1 +

√
ln lnn
n

)

≤ ut
(

1− c(c− 20
√
c)t

n
(1− 16Tp(c+ 20

√
c)t)(

1−
∑t
i=0(c+ 20

√
c)i

n

))(
1 +

√
ln lnn
n

)
(Using the bound on lt)

≤ ut
(

1− c(c− 20
√
c)t

4n

)(
1 +

√
ln lnn
n

)
(

Since (1− 16Tp(c+ 20
√
c)t) ≥ 1

2
,(

1−
∑t
i=0(c+ 20

√
c)i

n

)
≥ 15

16

)

≤

(
n−

∑t
i=0(c− 20

√
c)i

4n

)(
1− c(c− 20

√
c)t

4n

)

×

(
1 +

√
ln lnn
n

)

≤

(
n−

∑t
i=0(c− 20

√
c)i

4n

)(
1− (c− 20

√
c)t+1

4n

)

×

(
1 +

√
ln lnn
n

)

≤

(
n−

∑t+1
i=0(c− 20

√
c)i

4n

)(
1 +

√
ln lnn
n

)
.

Thus, ut+1 satisfies the concentration bound with
failure probability at most 1/(32(t + 1)2) conditioned
on the event that ui, li for i ∈ {0, 1, · · · , t} satisfy their
respective concentration bounds.
2. Next we address the failure probability of rt+1 not
satisfying its concentration bound conditioned on the
event that ui, li for i ∈ {0, 1, · · · , t} satisfy their re-
spective concentration bounds. Lemma 5.2 proves that
the number of unique neighbors rt+1 is concentrated
around its expectation.

Lemma 5.2. Let qt := plt(1 − p)lt−1. With probability

at least 1− (1/32(t+ 1)2)

qtut

(
1 +

20√
c

)
≥ rt+1 ≥ qtut

(
1− 20√

c

)

when t+ 1 ≤ T .

Proof. [Proof of Lemma 5.2] Observe that rt+1 is a
binomially distributed random variable with ut tri-
als and success probability qt. Indeed, rt+1 is the
number of vertices among Ut which are adjacent
to exactly one vertex in Lt. For each u ∈ Ut,
Pr (u is adjacent to exactly one vertex in Lt) = plt(1 −
p)lt−1 = qt.

Using βt+1 =
√

4 ln 8(t+ 1), by Lemma 5.1, we
have that Pr

(
|rt+1 − qtut| > βt+1

√
qtut

)
≤ 2e−β

2
t+1/2 =

1
32(t+ 1)2

.

Hence, with probability at least 1− (1/32(t+ 1)2),

rt+1 ≤ qtut

(
1 +

√
4 ln 8(t+ 1)

qtut

)
(5.3)

rt+1 ≥≥ qtut

(
1−

√
4 ln 8(t+ 1)

qtut

)
.(5.4)

Lemma 5.3 proves the concentration of the expected
number of unique neighbors of Lt conditioned on the
event that ui, li for i ∈ {0, 1, · · · , t} satisfy their respec-
tive concentration bounds. This in turn helps in proving
that rt+1 is concentrated.

Lemma 5.3. For t + 1 ≤ T , if ut and lt satisfy their
respective concentration bounds, then

1. qtut ≤ c(c+ 20
√
c)t
(

1 +
√

ln lnn
n

)
,

2. qtut

≥ c(c−20
√
c)t

4

(
1−

∑t+1
i=0(c+20

√
c)i

n

)(
1−

√
ln lnn
n

)
.

Proof. [Proof of Lemma 5.3] Recall that qt = plt(1 −

p)lt−1. Hence,

qtut ≥ p(n−
t∑
i=0

(c+ 20
√
c)i)lt(1− p)lt−1

×

(
1−

√
ln lnn
n

)

= pn

(
1−

∑t
i=0(c+ 20

√
c)i

n

)
lt(1− p)lt−1

×

(
1−

√
ln lnn
n

)

≥ c

(
1−

∑t
i=0(c+ 20

√
c)i

n

)
lt(1− ltp)

×

(
1−

√
ln lnn
n

)

≥ c(c− 20
√
c)t
(

1−
∑t
i=0(c+ 20

√
c)i

n

)2

× (1− 16Tp(c+ 20
√
c)t)(1− p(c+ 20

√
c)t)

×

(
1−

√
ln lnn
n

)
(By the bound on lt)

≥ c(c− 20
√
c)t

4

(
1−

∑t+1
i=0(c+ 20

√
c)i

n

)

×

(
1−

√
ln lnn
n

)

using Lemma 5.5 and

(1− 16Tp(c+ 20
√
c)t) ≥ 1

2
,

(1− p(c+ 20
√
c)t) ≥ 1

2
when t+ 1 ≤ T .

For the upper bound:

qtut = plt(1− p)lt−1ut

≤ pltut

≤ plt

(
n−

∑t
i=0(c− 20

√
c)i

4

)(
1 +

√
ln lnn
n

)
(Using the bound on ut)

≤ clt

(
1−

∑t
i=0(c− 20

√
c)i

4n

)(
1 +

√
ln lnn
n

)

≤ c(c+ 20
√
c)t
(

1−
∑t
i=0(c− 20

√
c)i

4n

)

×

(
1 +

√
ln lnn
n

)
(Using the bound on lt)

≤ c(c+ 20
√
c)t
(

1 +

√
ln lnn
n

)
(

Since

(
1−

∑t
i=0(c− 20

√
c)i

4n

)
≤ 1

)
.

Consequently, using Lemma 5.3,

4 ln 8(t+ 1)
qtut

≤ 400
c

since, when t+ 1 ≤ T ,(
1−

∑t+1
i=0(c+ 20

√
c)i

n

)
≥
(

15
16

)2

,(
1−

√
ln lnn
n

)
≥ 1

2
and

1
2
≥ 4 ln 8(t+ 1)

(c− 20
√
c)t
.

Hence, by inequalities 5.3 and 5.4, with probability
at least 1− (1/32(t+ 1)2),

qtut

(
1 +

20√
c

)
≥ rt+1 ≥ qtut

(
1− 20√

c

)
(5.5)

when t+1 ≤ T . This concludes the proof of Lemma 5.2

Lemmas 5.2 and 5.3 together show that rt+1 satisfies the
concentration bounds with failure probability at most
(1/32(t + 1)2) conditioned on the event that ut and lt
satisfy their respective concentration bounds.
3. Finally we address the failure probability of lt+1

satisfying its concentration bound conditioned on the
event that ui, li for i ∈ {0, 1, · · · , t} satisfy their respec-
tive concentration bounds. By Step 2(e) of the algo-
rithm, the number of surviving vertices in level t + 1
is lt+1 := rt+1 − mt+1, where mt+1 denotes the num-
ber of edges among the vertices in Rt+1. In Lemma
5.2, we showed that the number of unique neighbors
rt+1 is concentrated around its expectation. Lemma
5.4 proves a concentration which bounds the number of
edges among the vertices in Rt. These two bounds will
immediately lead to the induction step on lt+1. Thus,
the probability that lt+1 does not satisfy its concentra-
tion bound will at most be the probability that either
mt+1 or rt+1 does not satisfy its respective concentra-
tion bound.

Lemma 5.4. mt+1 ≤ 8Tr2t+1p with probability at least
1− (1/16T).

Proof. [Proof of Lemma 5.4] Recall that mt+1 denotes
the number of edges among the vertices in Rt+1. Since
the algorithm has not explored the edges among the
vertices in Rt+1, mt+1 is a random variable following
the Binomial distribution with

(
rt+1

2

)
trials and success

probability p. By Markov’s inequality, we have that for
t+ 1 ≤ T ,

Pr
(
mt+1 ≥ 8Tr2t+1p

)
≤ 1

16T
.

Hence, mt+1 ≤ 8Tr2t+1p with probability at least 1 −
(1/16T), .

Recollect that lt+1 = rt+1−mt+1. The upper bound
of the induction step follows using Lemma 5.3:

lt+1 ≤ rt+1

≤ qtut
(

1 +
20√
c

)
≤ c(c+ 20

√
c)t
(

1 +

√
ln lnn
n

)(
1 +

20√
c

)

≤ (c+ 20
√
c)t+1

(
1 +

√
ln lnn
n

)
.

For the lower bound, we use Lemmas 5.2 and
5.4 conditioned on the event that lt and ut satisfy
their respective concentration bounds. With failure
probability at most

1
32(t+ 1)2

+
1

16T
,

we have that lt+1

= rt+1 −mt+1

≥ rt+1 − 8Tr2t+1p

= rt+1(1− 8Trt+1p)

≥ qtut
(

1− 20√
c

)(
1− 8Tqtutp

(
1 +

20√
c

))
(Using Lemma 5.2)

= ltp(1− p)lt−1ut
(
1− 8T ltp2(1− p)lt−1ut

×
(

1 +
20√
c

))(
1− 20√

c

)
(Substituting for qt = plt(1− p)lt−1)

≥ ltp
(

1− 20√
c

)
(1− ltp)(1− 12T ltp2(1− p)lt−1ut)

≥ ltp
(

1− 20√
c

)
(1− ltp)(1− 12Tnp2lt(1− p)lt−1)

(Since ut ≤ n)

≥ ltp
(

1− 20√
c

)
(1− ltp)(1− 12Tcplt(1− p)lt−1)

≥ ltp
(

1− 20√
c

)
(1− ltp− 12Tcplt(1− p)lt(1− ltp))

≥ ltp
(

1− 20√
c

)
(1− ltp(1 + 12Tc))

≥ ltput(1− ltp(1 + 12Tc))
(

1− 20√
c

)
≥ ltp(n−

t∑
i=0

(c+ 20
√
c)i)(1− ltp(1 + 12Tc))

×
(

1− 20√
c

)
(Using the bound on ut)

≥ ltnp

(
1−

∑t
i=0 (c+ 20

√
c)i

n

)
(1− ltp(1 + 12Tc))

×
(

1− 20√
c

)
= ltc

(
1−

∑t
i=0 (c+ 20

√
c)i

n

)
(1− ltp(1 + 12Tc))

×
(

1− 20√
c

)

≥ c(c− 20
√
c)t
(

1−
∑t
i=0 (c+ 20

√
c)i

n

)2

× (1− 16Tp(c+ 20
√
c)t)

× (1− (c+ 20
√
c)tp(1 + 12Tc))

(
1− 20√

c

)
(using the bound on lt)

≥ (c− 20
√
c)t+1

(
1−

∑t+1
i=0 (c+ 20

√
c)i

n

)
× (1− 16Tp(c+ 20

√
c)t+1) (Using Lemma 5.5)

proving the induction step of the lower bound for lt+1.
Thus, lt+1 satisfies the concentration bounds with

failure probability at most (1/32(t + 1)2) + (1/16T)
conditioned on the event that ui, li for i ∈ {0, 1, · · · , t}
satisfy their respective concentration bounds.

Finally, by the union bound, with probability at
most 1

32(t+1)2 + 1
32(t+1)2 + 1

16T , either ut+1 or lt+1 does
not satisfy its respective concentration bounds condi-
tioned on the event that ui, li for i ∈ {0, 1, · · · , t} sat-
isfy their respective concentration bounds. By induc-
tion hypothesis, the failure probability of some ui, li for
i ∈ {0, 1, · · · , t} not satisfying their respective concen-

tration bound is at most 1− at. Hence, the probability
that ui, li satisfy their respective concentration bound
for every i ∈ {0, 1, · · · , t+ 1} is at least at(1− (1/16(t+
1)2) − (1/16T)) ≥ at+1. Therefore, with probability at
least at+1, every ui, li for i ∈ {0, 1, · · · , t + 1} satisfy
their respective concentration bounds. This proves the
stronger induction hypothesis.

To complete the proof of Lemma 3.1, recollect
that we showed that the failure probability of ri+1

satisfying its concentration bound conditioned on li and
ui satisfying their respective concentration bounds is at
most 1/(32(i + 1)2). By the union bound argument,
it immediately follows that with failure probability at
most (t/16T)+(3/32)

∑t
i=1(1/i2)+(1/32(t+1)2) ≤ 1/4,

every ri+1, ui and li, for i ∈ {0, 1, · · · , t} satisfies its
respective concentration bound. This concludes the
proof of Lemma 3.1.

Lemma 5.5. For t+ 1 ≤ T ,

1. (
1−

∑t
i=0(c+ 20

√
c)i

n

)2

≥ 1−
∑t+1
i=0(c+ 20

√
c)i

n

2. (1− 16Tp(c+ 20
√
c)t) (1− (c+20

√
c)tp(1+12Tc))

≥
(
1− 16Tp(c+ 20

√
c)t+1

)
Proof. [Proof of Lemma 5.5] We prove the first part of
the Lemma by induction. For the base case, we need to
prove that

1 +
1
n2
− 2
n
≥ 1− c+ 20

√
c

n
− 1
n

i.e., to prove that n− 1 ≤ (c+ 20
√
c)n

which is true. For the induction step, we need to prove
that (

1−
∑t
i=0(c+ 20

√
c)i

n
− (c+ 20

√
c)t+1

n

)2

≥ 1−
∑t+2
i=0(c+ 20

√
c)i

n
Now, LHS

=

(
1−

∑t
i=0(c+ 20

√
c)i

n

)2

+
(c+ 20

√
c)2t+2

n2

− 2(c+ 20
√
c)t+1

n

(
1−

∑t
i=0(c+ 20

√
c)i

n

)

≥ 1−
∑t+1
i=0(c+ 20

√
c)i

n
+

(c+ 20
√
c)2t+2

n2

− 2(c+ 20
√
c)t+1

n
+

2(c+ 20
√
c)t+1

∑t
i=0(c+ 20

√
c)i

n2
.

Hence, it is sufficient to prove that

− (c+ 20
√
c)t+2

n
≤ (c+ 20

√
c)2t+2

n2
− 2(c+ 20

√
c)t+1

n

+
2(c+ 20

√
c)t+1

∑t
i=0(c+ 20

√
c)i

n2

(c+ 20
√
c) ≥ 2− (c+ 20

√
c)t+1

n

− 2
∑t
i=0(c+ 20

√
c)i

n
,

which is true for large enough c when t+ 1 ≤ T .
For the second part of the Lemma, we need to prove

that (1− 16Tp(c+ 20
√
c)t) (1−(c+20

√
c)tp(1+12Tc))

≥
(
1− 16Tp(c+ 20

√
c)t+1

)
i.e., 1 − 16Tp(c + 20

√
c)t − (c + 20

√
c)tp(1 + 12Tc) +

18Tp2(c+ 20
√
c)2t(1 + 12Tc)

≥ 1− 16Tp(c+ 20
√
c)t+1

i.e.,

(1− 16Tp(c+ 20
√
c)t)(1 + 12Tc) ≤ 16T (c+ 20

√
c− 1)

which is true since 1 + 12Tc ≤ 16T (c + 20
√
c − 1) for

large c and the rest of the terms are less than 1 when
t+ 1 ≤ T .

5.3 Planted Feedback Vertex Set We prove
Lemma 4.1 by the second moment method.

Proof. [Proof of Lemma 4.1] Let S ⊂ V \ P , |S| ≥
(1 − δ)n/10, v ∈ P . Let Xv denote the number of
cycles of size k through v in the subgraph induced
by S ∪ {v}. Then, E(Xv) =

(
(1−δ)n/10

k−1

)
pk. Using

Chebyshev’s inequality, we can derive that

Pr (Xv = 0) ≤ Var (Xv)
E(Xv)2

.

To compute the variance of Xv, we write Xv =∑
A⊆S:|A|=k−1XA, where the random variable XA is 1

when the vertices in A induce a cycle of length k with
v and 0 otherwise.

Var (Xv) ≤ E(Xv)

+
∑

A,B⊆S:|A|=|B|=k−1,A 6=B

Cov (XA, XB)

Now, for any fixed subsets A,B ⊆ S, |A| = |B| =
k − 1 and |A ∩ B| = r, Cov (XA, XB) ≤ p2k−r and
the number of such subsets is at most

(|S|
2k−2−r

)(
k
r

)
≤(

n
2k−2−r

)(
k
r

)
. Therefore,

k−2∑
r=0

∑
A,B⊆S:|A|=|B|=k−1,|A∩B|=r

Cov (XA, XB)
E(Xv)2

≤
k−2∑
r=0

(
k
r

)(
n

2k−2−r
)
p2k−r(

(1−δ)n/10
2k−2

)
p2k

≤
k−2∑
r=0

Cr
(np)r

(for some constants Cr dependent on r, δ)
→ 0

as n → ∞ if p ≥ C/n1−2/k for some sufficiently large
constant C since each term in the summation tends to
0 and the summation is over a finite number of terms.
Thus

Pr (Xv = 0) ≤ 1(
(1−δ)n/10

k−1

)
pk
≤ 1

((1− δ)n/10)k−1pk
.

Therefore,

Pr (Xv ≥ 1) ≥ 1− 1
((1− δ)n/10)k−1pk

and hence

Pr (Xv ≥ 1∀v ∈ P) ≥
(

1− 1
((1− δ)n/10)k−1pk

)|P |
=
(

1− 1
((1− δ)n/10)k−1pk

)δn
≥ e−

10k−1δ
2(1−δ)k−1nk−2pk → 1

as n→∞ if p ≥ C
n1−2/k for some large constant C.

Finally, we prove Lemma 4.4 by computing the
expectation.

Proof. [Proof of Lemma 4.4]
E(Number of cycles of length k)

≤
k∑
i=1

(
|P |
i

)(
|R|
k − i

)
k!pk

=
k∑
i=1

(
δn

i

)(
(1− δ)n
k − i

)
k!pk

≤
k∑
i=1

(δn)i((1− δ)n)k−i(kp)k

= ((1− δ)nkp)k
k∑
i=1

(
δ

1− δ

)i
= ((1− δ)nkp)k(1− δ) ≤ (nkp)k.

6 Conclusion

Several well-known combinatorial problems can be re-
formulated as hitting set problems with an exponential
number of subsets to hit. However, there exist efficient
procedures to verify whether a candidate set is a hit-
ting set and if not, output a subset that is not hit. We
introduced the implicit hitting set as a framework to
encompass such problems. The motivation behind in-
troducing this framework is in obtaining efficient algo-
rithms where efficiency is determined by the running
time as a function of the size of the ground set. We
initiated the study towards developing such algorithms
by showing an algorithm for a combinatorial problem
that falls in this framework – the feedback vertex set
problem on random graphs. It would be interesting to
extend our results to other implicit hitting set problems
mentioned in Section 1.1.

References

[AKS98] N. Alon, M. Krivelevich, and B. Sudakov, Finding
a large hidden clique in a random graph, SODA ’98:
Proceedings of the ninth annual ACM-SIAM sympo-
sium on Discrete algorithms (Philadelphia, PA, USA),
Society for Industrial and Applied Mathematics, 1998,
pp. 594–598.

[dAP07] Wladimir de Azevedo Pribitkin, Simple upper
bounds for partition functions, The Ramanujan Journal
18 (2007), no. 1, 113–119.

[FdlV86] W. Fernandez de la Vega, Induced trees in sparse
random graphs, Graphs and Combinatorics 2 (1986),
227–231.

[FdlV96] , The largest induced tree in a sparse ran-
dom graph, Random Struct. Algorithms 9 (1996), no. 1-
2, 93–97.

[FK08] A. Frieze and R. Kannan, A new approach to the
planted clique problem, IARCS Annual Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2008) (Dagstuhl, Ger-
many), Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 2, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2008, pp. 187–198.

[Fri90] A. M. Frieze, On the independence number of random
graphs, Discrete Math. 81 (1990), no. 2, 171–175.

[GM75] G. Grimmett and C. McDiarmid, On colouring ran-
dom graphs, Mathematical Proceedings of Cambridge
Philosophical Society 77 (1975), 313–324.

[Jer92] M. Jerrum, Large cliques elude the metropolis pro-
cess, Random Structures and Algorithms 3 (1992),
347–359.

[Kar72] R. Karp, Reducibility among combinatorial prob-
lems, Complexity of Computer Computations(R.E.
Miller and J.W. Thatcher, eds.) (1972), 85–103.

[KMC] R. Karp and E. Moreno-Centeno, Implicit hitting set
problems, Manuscript in preparation.

[Lit88] N. Littlestone, Learning quickly when irrelevant at-
tributes abount: A new linear threshold algorithm, Ma-
chine Learning 2 (1988), 285–318.

[McD84] C. McDiarmid, Colouring random graphs, Annals
of Operations Research 1 (1984), 183–200.

[SS08] J. Spencer and C.R. Subramanian, On the size of
induced acyclic subgraphs in random digraphs, Discrete
Mathematics and Theoretical Computer Science 10
(2008), no. 2, 47–54.

