Plan for today

- Nonlinear Optimization: Algorithms
 - Unconstrained Single Var
 1. Bisection Search
 2. Newton Search

- Integer Programming
 - Power of integer variables in formulations

Announcements:
- Exam 2 Review Problems posted
NLP: ALGORITHMS

... where we see algorithms to solve single variable unconstrained nonlinear optimization problems
MOTIVATIONS

... why do we even need algorithms?
Why can’t we use the theory?
Motivations for algorithm

- Suppose we want to solve \(\max f(x) \)
 where \(f(x) \) is a differentiable concave function
- If we can find a point \(x^* \) such that \(f'(x^*) = 0 \), then it must be a global maximum

- We may not have an easy way to find such a stationary point
 - If \(f(x) \) is a complicated function, there may not be an easy closed form expression for \(x^* \)
 - E.g., consider \(f(x) = xe^{1-x} - x^6 \)
 - Is this function concave?
Is this function concave?

\[f(x) = xe^{1-x} - x^6 \]

\[f'(x) = e^{1-x}(1-x) - 6x^5 \]

\[f''(x) = e^{1-x}(x-2) - 30x^4 \]
Motivations for algorithm

• Suppose we want to solve $\max f(x)$ where $f(x)$ is a differentiable concave function.
• If we can find a point x^* such that $f'(x^*) = 0$, then it must be a global maximum.

• We may not have an easy way to find such a stationary point.
 • If $f(x)$ is a complicated function, there may not be an easy closed form expression for x^*.
 • E.g., consider $f(x) = xe^{1-x} - x^6$.
 • This function is concave.
 $$f'(x) = e^{1-x}(1-x) - 6x^5$$

Question: How do we find a root of $f'(x) = 0$?
We will find a value x that is numerically close to the value of the root.
NLP: UNCONSTRAINED, SINGLE VAR

How to find x such that $f'(x) = 0$?

1. Bisection search
One-Var Unconstrained Optimization

Idea: Suppose we have located two points x_L and x_U (with $x_L < x_U$) such that:

- $f'(x) > 0$ at $x = x_L$
- $f'(x) < 0$ at $x = x_U$

Since $f(x)$ is differentiable, there must be a point x^* in the interval (x_L, x_U) such that $f'(x) = 0$ at $x = x^*$

Question: How can we find this x^*?
Trap x^* within a narrow interval

$f(x)$

x_L

$f'(x_L) > 0$

x_U

$f'(x_U) < 0$
Bisection Search

• In each iteration, we reduce the width of our interval by half
 • Repeat this process until the width is sufficiently narrow
 • If width is sufficiently narrow, then we should be “close enough” to x^*

Bisection Search Algorithm:

• **Initialization:** Choose some $\epsilon > 0$ and identify initial value of x_L and x_U such that $f'(x_L) > 0$ and $f'(x_U) < 0$

• **Iteration:**
 1. Let $x_m = \frac{x_L + x_U}{2}$; we have 3 cases:
 1. If $f'(x_m) > 0$, set $x_L = x_m$
 2. If $f'(x_m) < 0$, set $x_U = x_m$
 3. If $f'(x_m) = 0$, set $x^* = x_m$ and terminate
 2. If $x_U - x_L \leq 2\epsilon$, then return $x_m = \frac{x_L + x_U}{2}$, which must be within a distance of ϵ from x^*; otherwise return to step 1
Bisection Search: Geometric Visualization

$f(x)$

x_L x_U

Example
Bisection Search: Numerical Example

- \(\max f(x) = -4x^4 - 5x^2 + 3x \)
- \(f'(x) = -16x^3 - 10x + 3 \)
- \(f''(x) = -48x^2 - 10 \)

- Note that \(f''(x) < 0 \) for all \(x \) and hence \(f(x) \) is concave

- For this example, we will choose \(\epsilon = 0.01, x_L = 0, x_U = 1 \)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>(x_L)</th>
<th>(x_U)</th>
<th>(x_m)</th>
<th>(f'(x_m))</th>
<th>(\frac{x_U - x_L}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>-4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Bisection Search: Numerical Example

The bisection search method involves the following steps:

1. If \(f'(x) > 0 \) at \(x_m \), set \(x_L = x_m \).
2. If \(f'(x) < 0 \) at \(x_m \), set \(x_U = x_m \).
3. If \(f'(x) = 0 \) at \(x_m \), set \(x^* = x_m \) and terminate.

Given the function \(f'(x) = x^2 - 2 \), we can implement the bisection search method as follows:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>(x_L)</th>
<th>(x_U)</th>
<th>(x_m)</th>
<th>(f'(x_m))</th>
<th>(\frac{x_U - x_L}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>-4</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>0.5</td>
<td>0.375</td>
<td>-1.59375</td>
<td>0.125</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>0.375</td>
<td>0.3125</td>
<td>-0.61328</td>
<td>0.0625</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>0.3125</td>
<td>0.28125</td>
<td>-0.16846</td>
<td>0.03125</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
<td>0.28125</td>
<td>0.265625</td>
<td>0.04388</td>
<td>0.015625</td>
</tr>
<tr>
<td>7</td>
<td>0.265625</td>
<td>0.28125</td>
<td>0.273438</td>
<td>-0.06149</td>
<td>0.007813</td>
</tr>
</tbody>
</table>

\(x_m \) is sufficiently close to the true \(x^* \).
Bisection Search

- **Finding initial** lower and upper bounds \((x_L, x_U)\):
 - Choose some current point \(x_{\text{curr}}\)
 - If \(f'(x_{\text{curr}}) > 0\), then \(x_{\text{curr}}\) is a lower bound, so set \(x_L = x_{\text{curr}}\)
 - To find an upper bound, choose some \(\alpha > 0\) and find \(f'(x_{\text{curr}} + \alpha)\)
 - If \(f'(x_{\text{curr}} + \alpha) < 0\), then \(x_U = x_{\text{curr}} + \alpha\), otherwise increase \(\alpha\) and try again
 - Note: If \(f'(x_{\text{curr}}) < 0\), then \(x_{\text{curr}}\) is an upper bound
 - choose \(\alpha < 0\) to search for a lower bound
Bisection Search: Advantages and Limitations

• **Pros:**
 • Simple and easy to implement
 • Works even if the objective function is not necessarily concave, but unimodal

• **Con:**
 • The objective function needs to be differentiable
NLP: UNCONSTRAINED, SINGLE VAR

How to find x such that $f'(x) = 0$?

2. Newton Search
Motivations for algorithm

• Suppose we want to solve \(\max f(x) \)
 where \(f(x) \) is a differentiable concave function
• If we can find a point \(x^* \) such that \(f'(x^*) = 0 \), then it must be a global maximum

• We may not have an easy way to find such a stationary point
 • If \(f(x) \) is a complicated function, there may not be an easy closed form expression for \(x^* \)
 • E.g., consider \(f(x) = xe^{1-x} - x^6 \)
 • This function is concave

\[
 f'(x) = e^{1-x}(1-x) - 6x^5 \\
 f''(x) = e^{1-x}(x - 2) - 30x^4
\]

Question: How do we find a root of \(f'(x) = 0 \)?
We will find a value \(x \) that is numerically close to the value of the root
Newton Search: Overview

- Bisection search only uses information about the first derivative of $f(x)$
- Newton’s method uses information about the second derivative as well
 - Creates a quadratic approximation of $f(x)$ around the current solution
 - Uses this quadratic approximation to approximate a new solution
 - If the new solution is “sufficiently close” to the previous solution, then the algorithm stops
Newton Search: Quadratic Approximation

• Suppose our current solution is x_i
 • A quadratic approximation of $f(x)$ near x_i is found by the Taylor series:
 \[
 f(x) \approx f(x_i) + f'(x_i)(x - x_i) + \frac{1}{2} f''(x_i)(x - x_i)^2
 \]
 • To find a new solution, take the derivative (wrt x) and set it to zero
 \[
 f'(x) \equiv f'(x_i) + f''(x_i)(x - x_i) = 0
 \]
 • Hence, $x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$ is the next solution
 • Repeat this process until the new solution is x_{i+1} “close enough” to x_i
Newton Search: The Algorithm

Newton’s Method Algorithm

- **Initialization:** Choose some \(\epsilon > 0 \), identify an initial solution \(x_0 \) and let \(i = 0 \)
- **Iteration:**
 1. Compute \(x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)} \)
 2. If \(|x_{i+1} - x_i| < \epsilon \), then OUTPUT \(x_{i+1} \) and STOP
 Otherwise let \(i = i + 1 \) and go to step 1
Newton Search: Numerical Example

- max $f(x) = -4x^4 - 5x^2 + 3x$
- $f'(x) = -16x^3 - 10x + 3$
- $f''(x) = -48x^2 - 10$

- Note that $f''(x) < 0$ and hence $f(x)$ is concave

- For this example, we will choose $\epsilon = 0.01$ and let $x_0 = 0$

| Iteration | x_i | $f'(x_i)$ | $f''(x_i)$ | x_{i+1} | $|x_{i+1} - x_i|$ |
|-----------|--------|-----------|------------|-----------|-----------------|
| 1 | 0 | 3 | -10 | 0.3 | 0.3 |
| 2 | 0.3 | -0.432 | -14.32 | 0.26983 | 0.0301 |
| 3 | 0.26983| -0.01267 | -13.4949 | 0.26889 | 0.0009 |
Newton Search: The Algorithm

Newton’s Method Algorithm

• **Initialization**: Choose some $\epsilon > 0$, identify an initial solution x_0 and let $i = 0$

• **Iteration**:

1. Compute $x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$
2. If $|x_{i+1} - x_i| < \epsilon$, then OUTPUT x_{i+1} and STOP
 Otherwise let $i = i + 1$ and go to step 1

Alternative interpretation:

We are trying to find the root of the function $g(x) := f'(x)$

1. Start from some point x_0, pretend that $g(x)$ is proportional to x (linear in x), i.e.,

 $g(x) = g'(x_0)x + c$

 and ask: how much should we change x (moving from x_0 to x_1) to drive $g(x)$ to 0:

 $g(x_0) - 0 = g'(x_0)(x_0 - x_1)$, so $x_1 = x_0 - \frac{g(x_0)}{g'(x_0)}$

2. Take x_1 as the new x_0 and repeat until x_0 and x_1 are sufficiently close
Newton Search: Geometric Visualization

Geometric description:

We want to find a root of \(f'(x) = 0 \). Let \(g(x) = f'(x) \)

1. From current point \(x_0 \), slide down/up the slope to the \(x \) axis
 - The slope is given by the gradient/derivative, \(g'(x) \) at \(x = x_0 \)

2. Use the intersection as the next point \(x_1 \), repeat 1 until the change in the \(x \) value in the next iteration is tiny

Newton’s method is applicable to find a root of any function \(g(x) \)
Newton Search: Advantages and Limitations

• **Pros:**

 • Newton’s method tends to converge faster than bisection search

 • Can you think of cases, where convergence to the root will be very fast?

• **Cons:**

 • To use the method for optimizing $f(x)$, we need $g'(x) = f''(x)$, which means that $f(x)$ needs to be twice differentiable

 • In some other cases, convergence is very slow or never happens (depends on the starting point)
... where we see the power of integer variables and algorithms to solve optimization problems involving integer variables

,..., −3, −2, −1, 0, 1, 2, 3, ...
Linear Programming Formulation

• A **Linear Programming Formulation** is an optimization problem formulation in which
 • the objective function and
 • all constraints are linear functions of decision variables, which are real variables

• More specifically, in a linear programming, the objective function and all constraints satisfy the following four conditions
 • Proportionality
 • Additivity
 • Divisibility
 • Certainty
 Recall: Each decision variable can take any real value (not necessarily integers) as long as all constraints are satisfied

What if we have a linear program requiring variables to only take integer values? Such formulations are known as integer programs
Integer Programming

An integer programming (IP) model is similar to a linear programming model, except all variables have to take integer values

- if all variables have to be either 0 or 1, the model is sometimes referred to Binary IP (BIP)
- if some variables have to be integers while others can take real values, the model is referred to Mixed IP (MIP)
- when both objective and constraints in an IP are linear, the IP model is also referred to as a Integer Linear Program (ILP) or Mixed ILP (MILP)
- If objectives or constraints are nonlinear then it is known as non-linear IP
- Non-linear IP is usually very difficult to solve (ILP is hard enough)

<table>
<thead>
<tr>
<th>Linear Programming (LP)</th>
<th>Integer Programming (IP)</th>
<th>Binary Integer Programming (BIP)</th>
<th>Mixed Integer Programming (MIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>max (Z = 3x_1 + 5x_2)</td>
</tr>
<tr>
<td>(3x_1 + 4x_2 \leq 25)</td>
</tr>
<tr>
<td>(x_1 + x_2 \leq 20)</td>
</tr>
<tr>
<td>(x_1 \geq 0, x_2 \geq 0)</td>
<td>(x_1, x_2) integers</td>
<td>(x_1, x_2 \in {0,1})</td>
<td>(x_1 \geq 0, x_2) integer</td>
</tr>
</tbody>
</table>

Recall:
- A function is linear if it satisfies additivity and proportionality
- Constraint \(f(x) \leq b_i \) is linear if \(f \) is linear

Non-linear IP
POWER OF INTEGER VARIABLES

IP Formulations

... where we see the power of integer variables in mathematical modeling
Logical relationships, e.g., exclusion/inclusion

Examples:

1. Cake or Ice cream?
 - u_1: satisfaction of eating a cake, say $u_1 = 3$
 - u_2: satisfaction of eating ice cream, say $u_2 = 5$
 - Can eat at most one of the two
 - Goal: Maximize satisfaction

 Logical relationship:
 by saying yes to ice cream, you’re saying no to cake (exclusion)

2. Course selection
 - Can select from n courses
 - First m courses are required core courses
 - Have to take at least three core courses
 - Cannot spend more than h hours per week
 - g_i: credit from course i
 - t_i: time to be spent per week on course i
 - Goal: maximize total credits

 Logical relationship:
 certain number of elements (3 core courses) must be a part of the solution (inclusion)
Fixed Investment Problem

B-Mobile is considering using exactly one of the two technologies to build a network

- LTE1 has a fixed cost $100k and can serve up to 1000 customers at a cost of $70 per customer
- LTE2 has a fixed cost $80k and can serve up to 2000 customers at a cost of $90 per customer
- each customer generates a revenue of $150

Question: how many customers to serve and by which technology

\[y_i = 1 \text{ if technology } i \text{ is selected, } i = 1, 2 \]
\[x_i = \text{number of customers served by technology } i, i = 1, 2 \]

(Obj. in $1000s)
\[
\begin{align*}
\text{max} & \quad 0.08x_1 + 0.06x_2 - 100y_1 - 80y_2 \\
\text{s.t.} & \quad x_1 \leq 1000y_1 \\
& \quad x_2 \leq 2000y_2 \\
& \quad y_1 + y_2 = 1 \\
& \quad x_1, x_2 \geq 0 \\
& \quad y_1, y_2 \in \{0,1\} \\
& \quad x_1, x_2 \text{ integers}
\end{align*}
\]
Sequential decisions

Example:

Suppose that you have $20m to invest in two projects. The return from each is as follows:

Project 1: 1st installment (max $7m): -3\%, 2nd installment (max $8m): 10\%, 3rd installment (max $5m): 5\%

Project 2: 1st installment (max $10m): 8\%, 2nd installment (max $10m): 4\%

Fine-print: Investment will be counted towards next installment only if the previous installment’s complete max is invested.

Question: how much should you invest in each project in each installment?

What if you try to formulate this as a LP?

<table>
<thead>
<tr>
<th>Project 1</th>
<th>Project 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1: 1st installment, up to 7m</td>
<td>x_4: 1st installment, up to 10m</td>
</tr>
<tr>
<td>x_2: 2nd installment, up to 8m</td>
<td>x_5: 2nd installment, up to 10m</td>
</tr>
<tr>
<td>x_3: 3rd installment, up to 5m</td>
<td></td>
</tr>
</tbody>
</table>

Objective function:

\[\max Z = -0.03x_1 + 0.1x_2 + 0.05x_3 + 0.08x_4 + 0.04x_5 \]

Constraints:

\[x_1 \leq 7 \]
\[x_2 \leq 8 \]
\[x_3 \leq 5 \]
\[x_4 \leq 10 \]
\[x_5 \leq 10 \]
\[x_1 + x_2 + x_3 + x_4 + x_5 \leq 20 \]
\[x_1, x_2, x_3, x_4, x_5 \geq 0 \]

Optimum will be \(x_1^* = 0, x_2^* = 8, x_3^* = 2, x_4^* = 10, x_5^* = 0 \)

Wait a min…