Plan for today

• Game Theory
 • Solution Approach:
 1. Eliminating Dominant Strategies
 2. Saddle Point
 3. Graphical Method
 4. LP Method
 • Nash Equilibrium

• LP Solving in Excel
GAME THEORY

… where we see how to compute the optimal strategy for 2-player 0-sum games
WHAT IS A GAME?

... a mathematical framework for games
Two-player, zero-sum game

- A two-player zero-sum game is specified by
 - S_1, \ldots, S_m: strategies for Player A,
 - T_1, \ldots, T_n: strategies for Player B
- **Payoff table for A:** Shows the gain for Player A for each combination of strategies for the two players

```
<table>
<thead>
<tr>
<th></th>
<th>$T_1$</th>
<th>$\ldots$</th>
<th>$T_j$</th>
<th>$\ldots$</th>
<th>$T_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1$</td>
<td>$p_{11}$</td>
<td>$\ldots$</td>
<td>$p_{1j}$</td>
<td>$\ldots$</td>
<td>$p_{1n}$</td>
</tr>
<tr>
<td>$S_i$</td>
<td>$p_{i1}$</td>
<td>$\ldots$</td>
<td>$p_{ij}$</td>
<td>$\ldots$</td>
<td>$p_{in}$</td>
</tr>
<tr>
<td>$S_m$</td>
<td>$p_{m1}$</td>
<td>$\ldots$</td>
<td>$p_{mj}$</td>
<td>$\ldots$</td>
<td>$p_{mn}$</td>
</tr>
</tbody>
</table>
```

Payoff table for Player A
What would we like to understand?

- Given: payoff table for \(A \)
- Assuming that players are intelligent and rational

Question:
- With what probability (i.e., proportion) \(x_i \) should player A play each strategy \(S_i \) and
- With what probability (i.e., proportion) \(y_j \) should player B play each strategy \(T_j \) so that \(A \) maximizes her profit and \(B \) minimizes his loss

- Player \(A \) knows that Player \(B \) is an intelligent player and so will not allow Player \(A \) to get more and more profit
- So Player \(A \)’s objective will be to maximize the minimum profit that she can get
 - Player \(A \): **Maximin criterion**
- Similarly, Player \(B \)’s objective will be to minimize the maximum loss
 - Player \(B \): **Minimax criterion**
- **Value of the game** = Payoff to player \(A \) when both players play optimally
SOLUTION APPROACH 1

Pure Optimal Strategy: Eliminating Dominated Strategies

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S_2</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Example 1

- Player A will never play strategy S_3
 - Since no matter what Player B plays, Player A can play strategy S_1 to gain more money
 - So, S_3 is dominated by S_1 and hence can be eliminated
Example 1

- Player B knows that Player A is intelligent
 - And so would have eliminated S_3 from consideration
- Now, for Player B, strategy T_3 is dominated by T_1
 - Regardless of whether Player A plays S_1 or S_2, Player B can play strategy T_1 to lose less money
Example 1

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>S_2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>S_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Player A knows that Player B is intelligent
 - And so would have eliminated T_3 from consideration
- Now, for Player A, strategy S_2 is dominated by S_1
 - Regardless of whether Player B plays T_1 or T_2, Player A can play strategy S_1 to gain more money
Example 1

- Player B knows that Player A is intelligent
 - And so would have eliminated S_2 from consideration
- Now, for Player B, strategy T_2 is dominated by T_1
 - Player B can play strategy T_1 to lose less money
- So Player A always plays S_1 in order to maximize her minimum profit
- While Player B always plays T_1 in order to minimize his maximum loss
- Value of the game = 1

Observation: Optimum is to play a single strategy throughout. Such an optimal strategy is known as a **pure** optimal strategy
Dominated Strategies

- A strategy S_i is **dominated** by strategy S_j if S_j is at least as good as S_i regardless of what the opponent does.
- A dominated strategy can be eliminated.

Payoff table for Player A

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>...</th>
<th>T_j</th>
<th>...</th>
<th>T_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>p_{11}</td>
<td>...</td>
<td>p_{1j}</td>
<td>...</td>
<td>p_{1n}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S_i</td>
<td>p_{i1}</td>
<td>...</td>
<td>p_{ij}</td>
<td>...</td>
<td>p_{in}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S_m</td>
<td>p_{m1}</td>
<td>...</td>
<td>p_{mj}</td>
<td>...</td>
<td>p_{mn}</td>
</tr>
</tbody>
</table>
SOLUTION APPROACH 2

Pure Optimal Strategy: Identifying a Saddle Point

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>-3</td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>S_2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>S_3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
</tr>
</tbody>
</table>
Example 2

Consider Player A

- By playing S_1, she could gain 4 or lose 3
- Player B is intelligent, so will protect himself from large losses
- So he will play T_1 and ensure that player A incurs the largest loss
- So if player A plays S_1, then the best that she will achieve is only -3, i.e., the row-min
- Similarly for each row

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>-3</td>
<td>-2</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>S_2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>S_3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
</tr>
</tbody>
</table>
Example 2

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>(\text{min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>-3</td>
<td>-2</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>S_2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>S_3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>(\text{max})</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- **Consider Player** B
 - By playing T_1, he could lose 5 or gain 3
 - Player A is intelligent, so will protect herself from large losses
 - So she will play S_3 and ensure that player B incurs the largest loss
 - So if player B plays T_1, then the best that he will achieve is only 5, i.e., the col-max
 - Similarly for each col
Example 2

If Player A plays a single strategy throughout, then it has to be S_2.

If Player B plays a single strategy throughout, then it has to be T_2.

If either of them deviate, then the opponent will take advantage.

So Player A always plays S_2 in order to maximize her minimum profit.

While Player B always plays T_2 in order to minimize his maximum loss.

Value of the game $= 0$.

Observation: Optimum is to play a single strategy throughout. Such an optimal strategy is known as a pure optimal strategy.
Saddle Point

• For each row consider the minimum value
• For each column consider the maximum value
• If the maximum among the row-min and the minimum among the col-max is achieved by the same entry in the payoff table then the entry is a saddle point

• The common entry in the payoff table gives the value of the game
 • The optimal strategy for Player A is the strategy corresponding to the row of this entry
 • The optimal strategy for Player B is the strategy corresponding to the col of this entry

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_j</th>
<th>T_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>p_{11}</td>
<td>p_{1j}</td>
<td>p_{1n}</td>
</tr>
<tr>
<td>S_i</td>
<td>p_{i1}</td>
<td>p_{ij}</td>
<td>p_{in}</td>
</tr>
<tr>
<td>S_m</td>
<td>p_{m1}</td>
<td>p_{mj}</td>
<td>p_{mn}</td>
</tr>
</tbody>
</table>

Payoff table for Player A
Saddle point may not always exist

- Dominance rules do not eliminate any strategies
- No saddle point
- No pure optimum, so we need to look for **mixed** optimum
SOLUTION APPROACH 3

Mixed Optimum Strategy: Graphical Method

\[T_1 x \quad T_2 x \]
\[S_1 \quad 1 \quad -1 \]
\[S_2 \quad -1 \quad 1 \]
Consider Player A

- If Player B consistently plays T_1, then Player A’s gain is $0x + 5(1 - x)$
- If Player B consistently plays T_2, then Player A’s gain is $-2x + 4(1 - x)$
- If Player B consistently plays T_3, then Player A’s gain is $2x - 3(1 - x)$
- **Player A: Maximin criterion** (Maximize the minimum profit)

\[
\max_Z = \min\{5 - 5x, 4 - 6x, -3 + 5x\}
\]
Example 3: Graphical Method

\[
\max_{0 \leq x \leq 1} Z = \min \{5 - 5x, 4 - 6x, -3 + 5x\}
\]

- Optimal mixed strategy for Player A is \(x = \frac{7}{11}, 1 - x = \frac{4}{11}\)
- Value of the game is \(-3 + 5 \left(\frac{7}{11}\right) = \frac{2}{11}\)
Example 3

What is the optimal strategy for Player B?

- If Player A consistently plays S_1, then Player B’s loss is $0y_1 - 2y_2 + 2(1 - y_1 - y_2)$
- If Player A consistently plays S_2, then Player B’s loss is $5y_1 + 4y_2 - 3(1 - y_1 - y_2)$
- **Player B: Minimax criterion** (Minimize the maximum loss)

$$
\min_{0 \leq y_1 \leq 1} \max_{0 \leq y_2 \leq 1} \min_{y_1 + y_2 \leq 1} w = \max\{2 - 2y_1 - 4y_2, -3 + 2y_1 + y_2\}
$$

Two variables y_1, y_2! Cannot use graphical method! 🤔

What do we do? Next approach…
SOLUTION APPROACH 4

Mixed Optimum Strategy: LP

\[\begin{array}{c|ccc}
 & T_1 & T_2 & T_3 \\
\hline
S_1 & 0 & -2 & 2 \\
S_2 & 5 & 4 & -3 \\
\end{array} \]
Example 4

<table>
<thead>
<tr>
<th></th>
<th>(T_1)</th>
<th>(T_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(S_1)</td>
<td>3</td>
</tr>
<tr>
<td>(A)</td>
<td>(S_2)</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Consider Player** \(A\)
 - If Player \(B\) consistently plays \(T_1\), then Player \(A\)'s gain is \(3x + (1 - x)\)
 - If Player \(B\) consistently plays \(T_2\), then Player \(A\)'s gain is \(-2x + 2(1 - x)\)
 - **Player \(A\): Maximin criterion** (Maximize the minimum profit)

\[
\begin{align*}
\max_{0 \leq x \leq 1} Z &= \min\{2x + 1, -4x + 2\} \\
\end{align*}
\]

\[
\begin{align*}
\max u \\
u &\leq 2x + 1 \\
u &\leq -4x + 2 \\
0 &\leq x \leq 1
\end{align*}
\]

which is a LP

Solving gives \(x = \frac{1}{6}\)

Value of the game = Player \(A\)'s payoff = \(\frac{4}{3}\)
Example 4

Consider Player B

- If Player A consistently plays S_1, then Player B's loss is $3y - 2(1 - y)$
- If Player A consistently plays S_2, then Player B's loss is $y + 2(1 - y)$

Player B: Minimax criterion (Minimize the maximum loss)

\[
\min_{0 \leq y \leq 1} v = \max \{5y - 2, -y + 2\} = \min v
\]

which is a LP

Which can be solved using the simplex method
LP Formulation

Player A: Maximin criterion
Maximize the minimum profit

\[
\begin{align*}
\text{max } u \\
u &\leq 5x_2 \\
u &\leq -2x_1 + 4x_2 \\
u &\leq 2x_1 - 3x_2 \\
x_1 + x_2 &= 1 \\
x_1, x_2 &\geq 0 \\
u &\text{ unrestricted}
\end{align*}
\]

Player B: Minimax criterion
Minimize the maximum loss

\[
\begin{align*}
\text{min } v \\
v &\geq -2y_2 + 2y_3 \\
v &\geq 5y_1 + 4y_2 - 3y_3 \\
y_1 + y_2 + y_3 &= 1 \\
y_1, y_2, y_3 &\geq 0 \\
v &\text{ unrestricted}
\end{align*}
\]
Solving for Player B’s opt mixed strategy

Primal

$$\begin{align*}
\text{max } u \\
u - 5x_2 &\leq 0 \\
u + 2x_1 - 4x_2 &\leq 0 \\
u - 2x_1 + 3x_2 &\leq 0 \\
x_1 + x_2 &= 1 \\
x_1, x_2 &\geq 0 \\
u &\text{ unrestricted}
\end{align*}$$

$$x_1^* = \frac{7}{11}, x_2^* = \frac{4}{11}, u^* = \frac{2}{11}$$

Dual

$$\begin{align*}
\min v \\
v + 2y_2 - 2y_3 &\geq 0 \\
v - 5y_1 - 4y_2 + 3y_3 &\geq 0 \\
y_1 + y_2 + y_3 &= 1 \\
y_1, y_2, y_3 &\geq 0 \\
v &\text{ unrestricted}
\end{align*}$$

$$y_1^* = 0, y_2^* = \frac{5}{11}, y_3^* = \frac{6}{11}, v^* = \frac{2}{11}$$

Optimal mixed strategy for Player B is $\left(y_1^* = 0, y_2^* = \frac{5}{11}, y_3^* = \frac{6}{11} \right)$

- Strong Duality implies $v^* = \frac{2}{11}$
- Complementary slackness conditions:

$$\begin{align*}
y_1^*(u^* - 5x_2^*) &= 0 \\
y_2^*(u^* + 2x_1^* - 4x_2^*) &= 0 \\
y_3^*(u^* - 2x_1^* + 3x_2^*) &= 0 \\
x_1^*(v^* + 2y_2^* - 2y_3^*) &= 0 \\
x_2^*(v^* - 5y_1^* - 4y_2^* + 3y_3^*) &= 0
\end{align*}$$

$$\Rightarrow y_1^*(- \frac{18}{11}) = 0 \Rightarrow y_1^* = 0$$

$$\Rightarrow 0y_2^* = 0 \Rightarrow 0y_3^* = 0$$

$$\Rightarrow 2y_2^* - 2y_3^* = -\frac{2}{11} \Rightarrow -4y_2^* + 3y_3^* = -\frac{2}{11}$$

$$\Rightarrow y_1^* + y_2^* + y_3^* = 1$$

$$\Rightarrow y_2^* = \frac{5}{11}, y_3^* = \frac{6}{11}$$
LP Formulation: General Case

A consequence of duality:

Minimax Theorem: For a pair \((x^*, y^*)\) of mixed strategies that is optimal according to the maximin and minimax criterion,

1. the values \(u^*\) and \(v^*\) will be equal and
2. Neither player can do better by unilaterally changing her/his strategy
 - i.e., player A cannot gain more than \(u^*\) by shifting to a strategy different from \(x^*\) while player B continues to play his optimal strategy \(y^*\)
 - player B cannot lose less than \(v^*\) by shifting to a strategy different from \(y^*\) while player A continues to play her optimal strategy \(x^*\)
NASH EQUILIBRIUM
Equilibrium

- A pair of strategies \((x^*, y^*)\) for players \(A\) and \(B\) is said to be a **(Nash) Equilibrium** if
 - No player can unilaterally improve her/his payoff by changing her/his strategy
 i.e.,
 - Player \(A\) cannot improve her payoff by deviating from \(x^*\)
 - Equivalently, for every possible \(x\), the payoff from \((x, y^*)\) is not better than the payoff from \((x^*, y^*)\)
 - Similarly for Player \(B\)

What we have seen:
Such an equilibrium exists for 2-player 0-sum games - by LP duality.

Main contribution of Nash (when he was a student):
Such an equilibrium exists for a large family of games.
(including 2-player 0-sum games)
Recall: Example 2

- If Player A plays a single strategy throughout, then it has to be S_2
- If Player B plays a single strategy throughout, then it has to be T_2
- If either of them deviate, then the opponent will take advantage

- So Player A always plays S_2 in order to maximize his minimum profit
- While Player B always plays T_2 in order to minimize his maximum loss
- Value of the game = 0

Here $(x = (0,1,0), y = (0,1,0))$ is a Nash Equilibrium
Nash Equilibrium

- A pair of strategies \((x^*, y^*)\) for players \(A\) and \(B\) is said to be a (Nash) Equilibrium if
 - No player can unilaterally improve her/his payoff by changing her/his strategy

- Every pure optimal strategy is a Nash Equilibrium
- Every saddle point is a Nash Equilibrium
- Nash Equilibrium could be mixed strategies
- To verify if \((x, y)\) is a Nash Equilibrium,
 - It is sufficient to verify if either player can improve her/his payoff when the opponent’s strategy is held fixed
Be aware of the use of Game Theory

- Game Theory as a field is not simply to decide optimal strategies for games.
- As a field it provides tools that help you decide whether you should even venture into playing a game or not.
- It can help you decide whether you are going to win/lose $$$s apriori by knowing the payoff table.
LP SOLVING IN EXCEL
LP Solving in Excel

• “Solver” is an Add-In for Microsoft Excel which can solve optimization problems, including constrained problems

• Caution: It can solve only “small-sized” LP
 • E.g., at most 200 variables
Outline

- Step 0: Install Solver

- Step 1: Input Instance and Solve
 - Step 1.1: Input Data, Declare Variables, Objective, and Constraints
 - Step 1.2: Set up solver
 - Step 1.3: Solve (and get reports)

- Step 2: Interpret reports
STEP 0: INSTALL SOLVER

... To be done only if your Excel Software does not have it already installed
Step 0: Install Solver

- Windows: https://www.youtube.com/watch?v=g7C3XXyMV4A
- MacOS: https://www.youtube.com/watch?v=g7C3XXyMV4A
STEP 1: INPUT INSTANCE AND SOLVE
Example 2: Formulation

- Tesla makes two models of cars
 - Model I: makes a profit of $3 million per batch
 - Model II: sells for $5 million per batch

- Tesla has three plants with limited working hours
 - Plant 1: Frame I
 - at most 4 working hours per week
 - 1 hour to prepare a batch of Frame I
 - Plant 2: Frame II
 - at most 12 working hours per week
 - 2 hours to prepare a batch of Frame II
 - Plant 3: Assembly
 - at most 18 working hours per week
 - 3 hours to assemble a batch of Model I (using Frame I) and 2 hours to assemble a batch of Model II (using Frame II)

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Profit</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Question: What is the best product mix?

$$\text{max } Z = 3x_1 + 5x_2 \quad \text{(profit)}$$

- $x_1 \leq 4$ (hour constraint for plant 1)
- $2x_2 \leq 12$ (hour constraint for plant 2)
- $3x_1 + 2x_2 \leq 18$ (hour constraint for plant 3)
- $x_1 \geq 0$ (non-negative amount of commodity 1)
- $x_2 \geq 0$ (non-negative amount of commodity 2)
Step 1.1.1: Input data

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla Production Problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of working hours at Plant 1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Number of working hours at Plant 2</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Number of working hours at Plant 3</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Profit (in millions)</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Step 1.1.2: Declare variables and objective

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tesla Production Problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Model I</td>
<td>Model II</td>
<td>Availability</td>
</tr>
<tr>
<td>4</td>
<td>Number of working hours at Plant 1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Number of working hours at Plant 2</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Number of working hours at Plant 3</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Profit (in millions)</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Decision Variables
- Number of batches of model I, x_1
- Number of batches of model II, x_2

Objective
- Total profit

- Profit cell B14 is a changing cell
- It is defined as an excel function “=B7*B10+C7*B11”
 - It represents $3x_1 + 5x_2$
Step 1.1.3: Declare constraints

- LHS are changing cells: they are the LHS of constraints
- Examples:
 - B17 cell is defined as an excel function “=B4*B10+C4*B11”
 - It represents $1 \times x_1 + 0 \times x_2$
 - B18 cell is defined as an excel function “=B5*B10+C5*B11”
 - It represents $0 \times x_1 + 2 \times x_2$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla Production Problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model I</td>
<td>Model II</td>
<td>Availability</td>
</tr>
<tr>
<td>Number of working hours at Plant 1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Number of working hours at Plant 2</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Number of working hours at Plant 3</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Profit (in millions)</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Decision Variables

- Number of batches of model I, x_1
- Number of batches of model II, x_2

Objective

- Total profit

<table>
<thead>
<tr>
<th>A</th>
<th>LHS</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of working hours at Plant 1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Number of working hours at Plant 2</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Number of working hours at Plant 3</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>
Step 1.2: Setup Solver

• Step 2.1: Open Solver Dialog
 • Data -> Solver

• Step 2.2: Setup Solver
 • Select the cell that represents the “Objective”
 • Choose objective cell B14
 • Check “Max” to indicate maximization
 • Select the cells that represent the “Variables”
 • Choose B10:B11 (press “Shift” key to select many cells)
 • Select the cells that represent the “Constraints”
 • Constraints can only involve two adjacent columns
 • Choose B17-B19 and C17-C19
 • Check “Make Unconstrained Variables Non-Negative” (if needed)
 • Select “Simplex LP” to tell the Solver that this is an LP
 • Click ”Solve”
Step 1.2: Setup Solver

- **Set Objective:** SBS14
- **Max**
- **Subject to the Constraints:** SBS17:SBS19 <= SCS17:SCS19

- **Make Unconstrained Variables Non-Negative**
- **Select a Solving Method:** Simplex LP
The constraint

$$B_{17}^\text{}:B_{19}^\text{} <= C_{17}^\text{}:C_{19}^\text{}$$

is the same as the system of constraints:

$$B_{17} <= C_{17}$$
$$B_{18} <= C_{18}$$
$$B_{19} <= C_{19}$$

But much more convenient to use!
Step 1.3: Solve (and get reports)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla Production Problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model I</td>
<td>Model II</td>
<td>Availability</td>
<td></td>
</tr>
<tr>
<td>Number of working hours at Plant 1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Number of working hours at Plant 2</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Number of working hours at Plant 3</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Profit (in millions)</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Decision Variables
- Number of batches of model I, x_1: 2
- Number of batches of model II, x_2: 6

Objective
- Total profit: 36

Constraints
- Number of working hours at Plant 1: LHS = 2, RHS = 4
- Number of working hours at Plant 2: LHS = 12, RHS = 12
- Number of working hours at Plant 3: LHS = 18, RHS = 18

After clicking solve, see two changes:

- **Change 1**: values in “Decision Variables”, “Objective”, and LHS cells will change
- Optimum decision variable values: (2,6)
- Optimum objective value: 36
Step 1.3: Solve (and get reports)

After clicking solve, see two changes:

- **Change 2:** solver window becomes

![Solver Results dialog box]

- There are 3 possible reports. Each one will be a separate tab in the excel file.
STEP 2: INTERPRET REPORTS

1. Answer Report
2. Sensitivity Report
3. Limits Report: No useful information