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Lecture 26: Lagrangian Dual
Lecturer: Karthik Chandrasekaran Scribe: Karthik

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publi-
cations.

26.1 Speeding Up Technique 1: Lagrangian Dual

To speed up solution techniques, we will try to derive good bounds for the IP. For maximization
IP, our aim is to derive small upper bounds and for minimization IP, our aim is to derive large
lower bounds. This will help in the branch and bound approach as it will enable the pruning of
more nodes in the enumeration tree. Consider the IP

z=max{c z: Az < b,Dzx < d,z € Z"}.

In several applications, we can partition the constraints of the IP as Ax < b, Dx < d where
Az < b is well-structured/easy, (i.e., IP with just these constraints are easy to solve or have
good approximation algorithms) and Dz < d are complicating constraints. Examples of well-
structured/easy constraints (that we have seen already) are flow constraints, matching constraints,
TU constraint matrix with integral RHS vector, and matroid constraints.

Example: Minimum cost degree bounded spanning tree problem. This is a slightly more
advanced version of the minimum cost spanning tree problem where we require bounds on the
degrees of the vertices in the spanning tree. This problem also arises in connectivity and network
design contexts.

Given: Graph G = (V,E),c: E—- R ,b:V = 7Z,
Goal: min{} . cc: T is a spanning tree with degp(u) < b, Yu € V'}
IP:

min g Cele

eck

DoeerTf ST(F)VFCE
YeepTe=|V]-1

ze € {0,1} Vee E
D <d| Yocsu @e < by YueV

where r(F') is the rank function of the graphic matroid corresponding to G. If we drop the compli-
cating constraints then the IP can be solved easily—it is the minimum cost spanning tree problem,
which we know can be solved efficiently by a greedy algorithm via the matroid connection.

Many discrete optimization problems have such a mix of well-structured and complicating con-
straints. Dropping these complicating constraints gives a relaxation (which is still an IP) and
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solving the resulting relaxation (as an IP) gives a bound on the optimum. However, the bound
could be weak since some constraints are ignored. An alternative way to address this is by bring-
ing these complicating constraints into the objective with a penalty term. This leads us to the
Lagrangian relaxation.

Definition 1. Consider the I[P z = max{c'z : * € S,Dz < d} where D € R™*" d € R™ and
S CZ" Foru € R™ u >0, let IP(u) be

2(u) := max{c’z + v’ (d — Dz): 2 € S}.

IP(u) is said to be the Lagrangian relazation of IP with parameter u. Here, u is the Lagrange
multiplier associated with the constraint system Dz < d.

Note that if S is a discrete set, then z(u) is still an IP. IP(u) relaxes the complicating constraints
by having them in the objective with a penalty term u”(d — Dx). We will study the power of this
relaxation now.

Proposition 2. For all w > 0, IP(u) is a relazation of IP.
Proof. We prove the properties needed of a relaxation (see Lecture 2).

1. Feasible region of IP(u) contains that of IP.

2. We have v > 0 and Dz < d for all z in feasible region of IP. Therefore, ¢! z+u” (d—Dzx) > ¢z
for all z in the feasible region of IP.

Proposition [2[ implies that z < z(u) for all u > 0.

Note that the Lagrangian relaxation is a relaxation for not only well-structured + complicating
constraints but any collection of constraints and is hence significant for unstructured IPs in order
to derive bounds while executing the Branch and Bound algorithm. So, Lagrangian relaxation is
often used in Branch and Bound implementations.

Since the Lagrangian relaxation is indeed a relaxation for every non-negative u, the next natural
question is, what choice of u should we use? Our goal is to find the tightest possible upper bound
for the maximization problem. This leads to the following definition:

Definition 3. Let
wrp = min{z(u) : u > 0}.

The quantity wyp is known as the Lagrangian Dual Problem.

We first see how to identify optimal solutions from the Lagrangian relaxation.

26-2



Optimality. Suppose we have a non-negative u such that the optimum solution to the Lagrangian
Relaxation satisfies the complicating constraints and complementary slackness. Then the optimum
solution to the Lagrangian Relaxation is also an optimum to the IP.

Lemma 3.1. Suppose u > 0 and

(i) x(u) is an optimum solution to IP(u),
(i) Dz(u) < d, and

(iii) [Dx(u)]; = d; if u; > 0 (complementarity).
Then x(u) is an optimum solution to the IP.

Proof.

wrp < z(u) (by definition of wr,p)
= c"z(u) +u’ (d — Da(u)) (by (i)
= cT'z(u) (by (iii))

(by (ii))

(by

z
WLD. by Proposition [2)

IN A

Hence, we should have equality throughout which implies that z(u) is an optimum to the IP. [

So, we can use this lemma to verify when the relaxation gives us an optimum.

Next, we will focus on the following questions:

1. How tight is wrp?

2. Can we compute wy,p?

To start off, let us understand how far is the objective value of the Lagrangian dual from the IP
value.

26.2 Strength of Lagrangian Dual
For simplicity, let S be finite, i.e., S := {z',... ,2"}. Then,

wrp = min z(u)
u>0

= min {max o ul(d- D.CC)}
u>0 es

= min {max ot +ul(d— Dw’)}
u>0 | i€[r]

=min{n:n> 't +ul(d— Da')Vi € [r],n € Ryu € R™,u >0} . (26.1)
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In the formulation of Problem ([26.1]), we have introduced a variable 7 to represent the upper bound
on the optimum value of the Lagrangian relaxation with parameter u. Observe that Problem (26.1))
is an LP with variables n and u. The dual of Problem (26.1) is

'
wLp = Inax Z Mz’(CTxi)
i=1

subject to Zui(Dxi —d) <0
i=1

,
et
i=1
ueR"
p =0
Setting = Y"1, wia’ with 3.7, u; = 1,4 € R, we have write the dual of Problem ([26.1) as
wrp = max{c'z : Dz < d,x € convex-hull(S)}. (26.2)
Thus, we have derived the following results:
Theorem 4. If S :={z € Z" : Ax < b}, then

wrp = max{c z : Dz < d,z € convex-hull(S)}.

Recall that z := max{c!z : * € S,Dz € d}. We derived Theorem 4| when S is a finite set. In
fact, Theorem 4] holds for S of the form {x € Z™ : Az < b}. This theorem tells us the strength
(i.e., tightness) of the bound obtained from the Lagrangian Dual. Essentially, the Lagrangian Dual
convexifies the feasible region and hence gives an LP.

Corollary 4.1. If S = {z € Z" : Az < b} and conver-hull(S) = {x € R™ : A'x < V'}, then
wrp = max{c'z: Az <V, ,Dr <d,z € R"}.

In certain cases, the Lagrangian Dual ends up being the LP-relaxation. Note that if S is the set of

incidence vectors of matchings in a bipartite graph or forests of a given graph then we can obtain
convex-hull(S) by simply relaxing (i.e., dropping) the integrality constraints.

26.3 Solving the Lagrangian Dual

Consider the IP z := max{c!z : x € S, Dx € d} and IP(u) given by z(u) := max{cl z+u? (d— Dx) :
x € S}.

We know that z < z(u) Yu > 0. Recall that the Lagrangian dual problem is

wLp = min z(u).

We now see how to solve the Lagrangian Dual problem.
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26.3.1 Approach 1: Solve Problem (26.2))
If convex-hull(S) needs lot of constraints, then use the cutting plane algorithm.

26.3.2 Approach 2: Subgradient Algorithm

The Lagrangian relaxation z(u) = max;e,{u’ (d—Dx)+c’ 2"} is a piecewise linear convex function
and thus, the Lagrangian Dual problem wyp = min,>0 z(u) is equivalent to minimizing a piecewise
linear convex function. We recall the geometry and algebraic form of piecewise linear convex
function below.

Piecewise linear convex function:

o Geometry:

Figure 26.1: Piecewise linear convex function
o Algebra: f(u) = max;ep{u’a’ — b;}

We immediately observe that the Lagrangian relaxation is a piecewise linear convex function and
moreover, the Lagrangian Dual problem is equivalent to minimizing a piecewise linear convex
function. The Subgradient Algorithm is designed to find a minimum of a piecewise linear convex
function. It is similar to gradient descent for minimizing a convex function, but is applicable when
the function is not differentiable. We emphasize that a piecewise linear convex function is not
differentiable. A subgradient is a natural generalization of a gradient. It is defined below.

Definition 5. Let f : R™ — R be a convex function and v € R™. Subgradient of f at u is a vector
v(u) € R™ such that
f(v) > fu) +v(w) T (v —u) Yo e R™.

Example: If f is a continuous differentiable function, then the gradient of f at w given by

0 0
Vf(u):= <€Mf;”3tfn>

Exercise. If f is a continuous differentiable function, then the gradient of f at u is a subgradient
of f at .

u=u

Just like how gradient can be used to recognize a minimizer of a continuous differentiable convex
function, the subgradient can also be used to recognize a minimizer of a continuous convex function.

Proposition 6 (Exercise). Let f : R™ — R be convex. A point u € R™ is an optimum solution
of min{f(u) : u € R™} iff 0 is a subgradient of f at u.
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If the function is a piecewise linear convex function, then the subgradient of the function at any
given point is easy to compute as illustrated by the following lemma.

Proposition 7 (Exercise). Let @ > 0 and x(u) be an optimum to the Lagrangian Relazation
IP(u). Then d — Dz(u) is a subgradient of z(u) at .

Subgradient Algorithm Outline. It is an iterative algorithm. In each iteration,

1. we choose an arbitrary subgradient and

2. move opposite to that direction by a small step.

With appropriate choice of subgradient and step size, the algorithm finds a point whose function
value is close to that of the optimum. We state the algorithm below.

Algorithm 1: Subgradient Algorithm

Initialize u® € R,k « 0;
repeat
Solve the Lagrangian Relaxation IP(u*) to obtain optimum solution z(u*);
7k« d — Dx(u¥) ; // subgradient of z(u) at u
if ¥ =0 then
| STOP and return z(u*)
uk—i—l

k

— max{uf — 0;7*} for step size 6 > 0;
k+—k+1

26.4 Choosing constraints to dualize in Lagrangian dual

Suppose we have an IP of the following form:
z = max{ch Al < bt
A’z < 1P
xeZl}

Then, we need to decide which constraints to dualize. We mention the trade-offs to keep in mind
while deciding which constraints to dualize.

1. Ability to solve Lagrangian Dual Problem wpp = min,>o z(uw). This is typically difficult to
estimate. The number of dual variables is a crude estimate for this.

2. Ability to solve Lagrangian Relazation IP(u). This is usually problem specific.

3. Strength of the bound resulting from the Lagrangian Dual wip. See Theorem

26.5 Application: Set Cover Problem
Covering constrained discrete optimization problems arise in contexts where we have to minimize

cost subject to producing at least as many items to meet a pre-specified demand. The set cover
problem is a quintessential covering constrained discrete optimization problem.
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Given: A finite ground set N, F C 2V, costs ¢: F — R,
Goal: min{> g scs: UgesS =N}

Let us summarize the data using the matrix A € {0,1

di o {1 ifiesS

MWXF with entries given by
0 otherwise.

for every i € N and S € F. With this matrix representation, we have the following IP formulation
for the set cover problem:

. Y oserCsTs: Y gerAiszts > 1Vie N (covering constraints)
min .
zs € {0,1} VS e F

Lagrangian Relaxation. By dualizing all covering constraints, we obtain the following La-
grangian relaxation:

Z(“’) = min { Z CsSxs + Zuz(l — Z Aisxs) X E {0, 1}]:}
SeF 1EN SeF
i.e.,

z(u) = min {Z u; + Z(cs - ZuiAiS)xs :x € {0, l}f} (26.3)

iEN SeF iEN

For a fixed u > 0, IP(u) given in Problem ([26.3)) is easy to solve: set

[z(u)ls = L ifes =2 ey uidis <0
0 otherwise.

Exercise. z(u) is an optimum to IP(u).

It means that, for a given u > 0, we can find an optimum solution z(u) to the Lagrangian relaxation
z(u) quickly. Therefore, each iteration of the subgradient algorithm can be implemented to run
very quickly. Keep in mind that the subgradient algorithm only obtains wrp and does not solve
the IP.
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