
IE 511: Integer Programming, Spring 2021 1 Apr, 2021

Lecture 20: Unstructured IPs, Pre-processing, Branch and Bound

Lecturer: Karthik Chandrasekaran Scribe: Karthik

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publi-
cations.

In the previous lecture, we saw three applications of the dynamic programming technique. In this
lecture, we will see one more application of this technique and subsequently move on to solving
techniques for unstructured IPs.

20.1 DP Application 4: Maximum weight subtree problem with
edge costs

This is a more complex version of the maximum weight subtree problem. This also arises in the
context of service providers aiming to decide which customers to connect. The problem is formally
stated as follows:

Given: Tree T = (V,E) rooted at r ∈ V , profits p : V → R, c : E → R+

Goal: Subtree rooted at r with maximum profit, i.e.,

max
{∑

v∈V (T ′) p(v)−
∑

e∈E(T ′) c(e) : T ′ is a subtree rooted at r
}
.

Exercise. Formulate an IP for this problem.

We will see an algorithm to solve this problem that is based on DP.

States: Let h(u) := maximum weight of a subtree rooted at u. We need to find h(r).

Deriving the recursion for h(u): If u is a leaf, then h(u) = max {0, p(u)}. Suppose u has children
v1, . . . , vk. Let T ′ be a maximum weight subtree rooted at u. We have exactly one of two possibilities
for T ′:

1. Either T ′ is empty,

2. Or T ′ is composed of subtrees rooted at vis in which case any subtree rooted at vi included
in T ′ should be a max-weight subtree rooted at vi (principle of optimality).

Note that the subtree rooted at vi in T ′ can be non-empty only if the edge uvi ∈ E(T ′). Therefore,
we have the following recurrence:

Recurrence:

h(u) = max

{
0, p(u) + max

x∈{0,1}k

{
k∑

i=1

(h(vi)− c(uvi))xi

}}
.

Now, how do we compute h(u) if know h(vi) for the children v1, . . . , vk of u? It seems like we need

20-1

to solve a BIP already! Well, observe that this BIP is easy to solve. This is because, the problem

max
x∈{0,1}k

k∑
i=1

(h(vi)− c(uvi))xi

can be solved in O(k) time by setting

x∗i :=

{
1 if h(vi)− c(uvi) > 0

0 otherwise.

Therefore, h(u) can be computed in O(k) time.

Thus, using the recursion, we can compute the h(·) values in a bottom-up fashion in the tree T .
This leads to the following theorem:

Theorem 1. Maximum weight subtree problem with edge costs can be solved in O (|V |) time.

20.2 Solving techniques for unstructured IPs

So far, we have focused on structured IPs and seen how to solve them—via either reduction to
LPs or primal or primal-dual or DP. Next, we move to solving techniques for general IPs, i.e.,
unstructured IPs. These solving techniques may not necessarily be polynomial-time. We will see
solving techniques and also emphasize the general theory underlying these solving techniques.

Recall that a general/unstructured IP is of the form

max{cTx : Ax ≤ b, x ∈ Zn}.

20.3 Pre-Processing

Given an unstructured IP, we first pre-process the IP. This involves three steps, namely

1. tightening bounds,

2. removing redundant constraints, and

3. fixing variables.

These steps are also performed while solving LPs. Let us illustrate these steps with an example.

Example:
max 2x1 + x2 − x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6 −→remove

0 ≤ x1 ≤ 3
after tightening bounds−−−−−−−−−−−−−−→7/8 ≤ x1 ≤ 9/5

0 ≤ x2 ≤ 1

1 ≤ x3
after tightening bounds−−−−−−−−−−−−−−→1 ≤ x3 ≤ 101/64

x1, x2, x3 ∈ Z

20-2

1. Tighten bounds:

� 5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2− 8 =⇒ x1 ≤ 9/5

� 8x3 ≤ 15− 5x1 + 2x2 ≤ 15− 0 + 2 = 17 =⇒ x3 ≤ 17/8

� 8x1 ≥ 9− 3x2 + x3 ≥ 9− 3 + 1 = 7 =⇒ x1 ≥ 7/8

� 8x3 ≤ 15− 5x1 + 2x2 ≤ 15− 5(7/8) + 2 = 101/8 =⇒ x3 ≤ 101/64

2. Remove redundant constraints: x1 + x2 + x3 ≤ 6 becomes redundant so remove it.

3. Fix Variables:

� Increasing x2 will not violate the constraints and will improve the objective. Therefore,
x2 = 1 in the optimal solution (if it exists).

� 1 ≤ x3 ≤ 101/64 and x3 ∈ Z which implies that x3 = 1 in the optimal solution (if it
exists).

� 7/8 ≤ x1 ≤ 9/5 and x1 ∈ Z which implies that x1 = 1 in the optimal solution (if it
exists).

After fixing variables, we need to verify feasibility. We see that x1 = 1, x2 = 1, x3 = 1 does not
violate any constraint and is hence an optimal solution.

In the above example, we were lucky to obtain an optimal solution purely by pre-processing. This
lucky situation may not happen with all unstructured IPs. However, pre-processing goes a long
way towards simplifying the instance and getting to the difficult part of the instance.

20.4 Branch and Bound (B&B)

Divide and Conquer is a popular technique in algorithm design. B&B is an extension of Divide and
Conquer to solve IPs.

20.4.1 Branching

Consider the IP
z := max{cTx : x ∈ S},

where S ⊆ Zn is some feasible region. We break it into subproblems: Let S = S1 ∪S2 ∪ · · · ∪Sk be
a decomposition of S and let

zi := max{cTx : x ∈ Si} ∀i ∈ [k].

We observe that z = max{zi : i ∈ [k]}. This is a simple observation. It turns out to be helpful for
many IPs.

A convenient way to represent the branching part of the B&B technique (i.e., the dividing aspect
of the Divide and Conquer approach) is via an enumeration tree. We illustrate the enumeration
tree with two examples.

20-3

Example 1. Suppose S ⊆ {0, 1}3. Then a possible enumeration tree is as shown in Figure 20.1
where S0 := {x ∈ S : x1 = 0}, S1 := {x ∈ S : x1 = 1} and proceed recursively. This style of
enumeration tree for S ⊆ {0, 1}n will have as many as 2n vertices in the enumeration tree. In
particular, in order to find a min cost TSP tour on n cities (complete graph instance with input
cost cij on edge ij) if we use Xij as indicator variables to determine if city i is followed by city j

in the tour, then we would have an enumeration tree with 2(n2) nodes.

Figure 20.1: Example of an enumeration tree

Example 2: Say we want to find a min cost TSP tour on n cities. Let S be the set of all tours. S
can be partitioned into three types: Sij := set of tours in S such that city j immediately follows
city 1. If we have n cities, then the number of vertices in this type of enumeration tree is (n− 1)!
(≈ nn ≈ 2n logn). Note that this enumeration tree has much fewer vertices for the n-city TSP than
the previous one.

The main issue with the branching technique is that we could produce a large enumeration tree,
i.e., an enumeration tree where the number of vertices is exponential in the input size. Note that
larger enumeration tree results in more computation time. So, complete enumeration would take
too much time. We will avoid complete enumeration by cleverly pruning the enumeration tree.
We will prune unnecessary parts of the tree. To prune, we will exploit relaxation and bounding
techniques.

20.4.2 Pruning Enumeration Trees

We will discuss pruning rules by considering the objective to be maximization. If the objective is
minimization, then you can either bring the problem to maximization form and apply the same
rules that we discuss or modify the rules suitably to apply them for the minimization problem.

We will see pruning rules based on bounds. The subproblem corresponding to node S may not

20-4

be solvable efficiently. However, typically we will be able to get some feasible solution and solve a
relaxation quickly.

� Solving a relaxation of a maximization problem gives an upper bound u on the objective value
of the original problem.

� The objective value of a feasible solution to a maximization problem gives a lower bound l
on the objective value of the original problem.

Therefore, for S, we will be able to get l, u such that l ≤ zS ≤ u quickly. We will use these bounds
to cleverly prune the tree. We will illustrate the pruning rules through examples.

Example 1: See Figure 20.2.

Figure 20.2: The bounds of the sub-problems allow us to (1) update the bounds for zS and (2)
then prune subproblem S1 as it has already been solved to optimality.

In Figure 20.2, we found better lower and upper bounds for z using the upper and lower bounds
for subproblems. Furthermore, branch S1 has achieved optimality because c1 = l1. So, we do not
have to explore branch S1 further.

These observations lead to the following general propositions:

Proposition 2 (Updating bounds). Suppose li ≤ zi ≤ ui ∀i ∈ [k]. Then

max{li : i ∈ [k]} ≤ zS ≤ max{ui : i ∈ [k]}.

Proposition 3 (Pruning by optimality). If li = ui for some i, then the optimum solution for the
ith subproblem zi := max{cTx : x ∈ Si} is known, so we do not have to explore branch Si further,
i.e., prune Si.

Any other reason to prune? Here is an example:

Example 2: See Figure 20.3

20-5

Figure 20.3: The bounds of the sub-problem allow us to prune S1 as we can provably say that the
optimal solution is not coming from that sub-problem.

In Figure 20.3, the branch rooted at S1 does not contain an optimal solution to the original problem
because u1 ≤ l (any solution under S1 has value ≤ 20 = u1 and we already have a solution of value
≥ 21 = l). So, prune the branch S1 and update the bounds.

These observations lead to the following general proposition:

Proposition 4 (Pruning by bound). If ui < l for some i, then the optimal solution for zi =
max{cTx : x ∈ Si} can never be an optimal solution to the original problem, i.e., prune Si.

We have one more reason to prune:

Proposition 5 (Pruning by infeasibility). If Si = ∅, then prune Si.

In spite of pruning rules, we may not be able to prune sometimes. In such scenarios, we might have
to explore the branches further to obtain better bounds, then percolate these bounds upward, and
verify if further pruning is possible.

Example 3: See Figure 20.4.

Figure 20.4: The bound on S1 and S2 lead to better bounds for the problem but we still need to
explore both subtrees.

20-6

	DP Application 4: Maximum weight subtree problem with edge costs
	Solving techniques for unstructured IPs
	Pre-Processing
	Branch and Bound (B&B) Technique
	Branching
	Pruning Enumeration Trees

