Recap

Definition 1. Let $P^{(0)} := P, P^{(1)} := (P^{(0)})', P^{(2)} := (P^{(1)})', \ldots, P^{(i+1)} := (P^{(i)})'$ be a sequence of polyhedra obtained by taking Chvátal-Gomory closure repeatedly.

Observation. 1) $P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \supseteq \ldots$, and 2) $P^{(t)} \supseteq P_I \forall t$.

Theorem 2 (Chvátal, Schrijver). For every rational polyhedron P, there exists a finite number t for which $P^{(t)} = P_I$.

Definition 3. The smallest number t for which $P^{(t)} = P_I$ is the Chvátal rank of P.

Theorem 2 is false for irrational polyhedra as illustrated by the following example:

Example (Schrijver): $P = \{x \in \mathbb{R}^2 : x_2 - cx_1 = 0, x_1 \geq 0\}$ for some irrational c. Then $P_I = \{0\}$, but $P^{(k)} = P \forall k$.

Theorem 2 is true for irrational polytopes which we now prove.

Theorem 4 (Chvátal (1973)). For every (possibly irrational) polytope P, there exists a finite number t for which $P^{(t)} = P_I$.

Proof. Let $P \subseteq \mathbb{R}^n$ be a polytope. Since P is bounded, $P \subseteq Q := \{x : -\Delta_i \leq x_i \leq \Delta_i \forall i \in [n]\}$. For every integral vector $z \in Q \setminus P$, there exists a rational half-space containing P but not z. Let S be the intersection of all such half-spaces. This means that S is a rational polyhedron (finite number of inequalities since Q is bounded). By Theorem 2 there exists a finite t such that $S^{(t)} = S_I$. Therefore,

$$P_I \subseteq P^{(t)} \subseteq S^{(t)} = S_I = P_I \implies P^{(t)} = P_I.$$

\[\square\]

24.1 Application of CG-cuts for structured IPs

24.1.1 Max weight matching in non-bipartite graphs

Given: $G = (V, E), w : E \to \mathbb{R}$

Goal: $\max\{\sum_{e \in M} w_e : M \text{ is a matching in } G\}$
The IP is \(\max \{ \sum_{e \in E} w_e x_e : X \in P \cap \mathbb{Z}^E \} \) where

\[
P := \left\{ x \in \mathbb{R}^E : \sum_{e \in \delta(v)} x_e \leq 1 \ \forall v \in V, x_e \geq 0, \ \forall e \in E \right\}.
\]

Then,

\[P_I := \text{Convex hull of indicator vectors of matchings in } G. \]

Recall that \(P \neq P_I \) as illustrated by the following example:

Example: Let \(G \) be the graph shown in Figure 24.1 then the solution given in Figure 24.2 is in \(P \) but not in \(P_I \).

![Figure 24.1: A non-bipartite graph.](image)

Let us see some inequalities for the first Chvátal closure for \(P \). We want to derive valid inequalities for \(P_I \). Let \(S \subseteq V \).

![Figure 24.2: A point in \(P \) but not in \(P_I \).](image)

Then the inequalities

\[
\sum_{e \in \delta(v)} x_e \leq 1 \ \forall v \in S
\]

are valid for \(P \). If we add all the inequalities of (24.1) we obtain that the inequality

\[
2 \sum_{e \in E(S)} x_e + \sum_{e \in \delta(S)} x_e \leq |S|
\]

is valid for \(P \) where \(E(S) := \{ uv \in E : u, v \in S \} \) and \(\delta(S) := \{ uv \in E : |\{u, v\} \cap S| = 1 \} \). We also know that the inequalities

\[
-x_e \leq 0 \ \forall e \in \delta(S)
\]

are valid.
are valid for \(P \). By summing up inequalities in (24.2) and (24.3), we see that the inequality
\[
2 \sum_{e \in E(S)} x_e \leq |S| \quad \text{is valid for } P.
\]
i.e.,
\[
\sum_{e \in E(S)} x_e \leq \frac{|S|}{2} \quad \text{is valid for } P
\]
i.e.,
\[
\sum_{e \in E(S)} x_e \leq \left\lfloor \frac{|S|}{2} \right\rfloor \quad \text{is a CG-cut for } P.
\]

Therefore, if \(|S|\) is odd, then we obtain new valid inequalities \(\sum_{e \in E(S)} x_e \leq \frac{|S| - 1}{2} \) for \(P_I \) which are not valid for \(P \). Thus, we have the following observation:

Observation.
\[
P' \subseteq \left\{ x \in \mathbb{R}^E : \begin{array}{ll}
x \in \mathbb{R}^E : & \sum_{e \in \delta(v)} x_e \leq 1 \quad \forall v \in V \\
x \geq 0 & \forall v \in E \\
\sum_{e \in E(S)} x_e \leq \left\lfloor \frac{|S| - 1}{2} \right\rfloor & \forall S \subseteq V, |S| \text{ odd}
\end{array} \right\} =: Q
\]

The last set of inequalities above are known as *odd-set inequalities*. Edmonds showed that the odd-set inequalities are sufficient to describe the convex-hull of incidence vectors of matchings in \(G \).

Theorem 5 (Edmonds). \(P_I = Q \).

Corollary 5.1. \(P' = P_I \) (\(P_I \subseteq P' \subseteq Q = P_I \)), i.e., Chvátal rank of \(P \) is one.

Thus, CG-cuts are a nice tool even for structured IPs:

- If we do not have an integral polyhedron for a structured IP then CG cuts give a systematic way to get closer to the integral hull.
- For some combinatorial optimization problems, like matchings, CG cuts *tell us how to strengthen the LP*.

24.2 More on Chvátal closure

The Chvátal rank may not be bounded by a polynomial in the size of the description of \(P \) (see HW for an example). Several discrete optimization problems use binary variables. In which case, the associated polyhedron is within \([0,1]^n\). We have the following bounds on the Chvátal rank of such polytopes.

Theorem 6. If \(P \subseteq [0,1]^n \), then Chvátal rank of \(P \) is at most \(n^2(1 + \log n) \).

Theorem 7. There exists \(P \subseteq [0,1]^n \) with Chvátal rank = \(\Omega(n^2) \).

We know that \(P' \) is possibly closer to \(P_I \) than \(P \). Can we optimize over \(P' \) efficiently?

Given: \(A, b, c \) where \(P = \{x : Ax \leq b\} \)

Goal: \(\max\{c^T x : x \in P'\} \)
Theorem 8 (Eisenbrand 2000). Optimization over first closure is NP-hard.

This raises the question of whether there are sufficient conditions on A and b to conclude that $P' = P_T$. Note that the polyhedron P defined in Section 24.1.1 has this property. We define a more general family of matrices below:

Definition 9 (Edmonds-Johnson (EJ) Matrices). A is an EJ matrix if $P(b,c,l,u) = \{x : b \leq Ax \leq c, l \leq x \leq u\}$ has Chvátal rank at most one for all integral b,c,l,u.

Recall that A is a TU matrix if $P(b,c,l,u)$ has Chvátal rank 0 for all integral b,c,l,u. We have the following sufficient conditions for a matrix to be an EJ matrix:

1. (Edmonds-Johnson) If A is integral and every column has l_1-norm ≤ 2, then A is an EJ matrix.
2. (Gerards-Schrijver) If A is integral and every column has l_1-norm ≤ 2 and every row has l_1-norm ≤ 2 and A has no odd-k_4 minor.

Identifying more general conditions remains an interesting research problem.

24.3 Cutting Plane Proof

Cutting plane proof is a method for demonstrating that every integral solution of $Ax \leq b$ satisfies a specified inequality $c^T x \leq \delta$. We could potentially show infeasibility of an IP (e.g., SAT) by deriving $0^T x \leq -1$ using CG-cuts.

Definition 10. Let $Ax \leq b$ be a system of inequalities. A cutting plane proof of $c^T x \leq \delta$ is a sequence of inequalities.

\[
\begin{align*}
c_1^T x &\leq \delta_1 \\
&\vdots \\
c_M^T x &\leq \delta_M
\end{align*}
\]

where

1. $c_M = c, \delta_M = \delta$.
2. c_1, \ldots, c_k are integral.
3. $c_i^T x \leq \delta_i'$ is a non-negative linear combination of the inequalities $Ax \leq b, c_1^T x \leq \delta_1, \ldots, c_{i-1}^T x \leq \delta_{i-1}$ for some δ_i' such that $\lfloor \delta_i' \rfloor \leq \delta_i$.

Also, M is the length of the proof.

A cutting plane proof can be viewed as a DAG by labeling each node by an inequality. See Figure 24.3.
Nodes represent CG-cuts obtained using combinations of inequalities.

Definition 11. The depth of an inequality is \(t \) if it can be obtained as a CG-cut of an inequality that is a combination of inequalities with depth at most \(t - 1 \).

Theorem 12. Let \(P = \{x : Ax \leq b\} \) be a rational/bounded polyhedron. Let \(w^T x \leq \beta \) be valid for \(P_I \). Then there exists a finite depth cutting plane proof of \(w^T x \leq \beta \).

Proof. By bounded Chvátal rank theorem. \(\square \)

Corollary 12.1. Let \(P = \{x : Ax \leq b\} \) be a rational polytope. If \(P_I = \emptyset \), then there exists a cutting plane proof of \(0^T x \leq -1 \) from \(Ax \leq b \).